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Linear and Non-Linear Regression: Powerful and
Very Important Forecasting Methods

Athanasios VASILOPOULOS

St. John’s University, United States

Regression Analysis is at the center of almostyeFerecasting technique, yet few
people are comfortable with the Regression metlmagolWe hope to improve the
level of comfort with this article. In this articlee briefly discuss the theory behind
the methodology and then outline a step-by-stepguhare, which will allow almost
everyone to construct a Regression Forecastingtimmdor both the linear and
some non-linear cases. Also discussed, in additmrthe model construction
mentioned above, is model testing (to establishifsignce) and the procedure by
which the Final Regression equation is derived aethined to be used as the
Forecasting equation. Hand solutions are derivedsiame small-sample problems
(for both the linear and non-linear cases) and thssilutions are compared to the
MINITAB-derived solutions to establish confidentéhie statistical tool, which can
be used exclusively for larger problems.
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1. Introduction and Model Estimation for the Linear Mo del

Regression analysis, in which an equation is ddritre@at connects the value of one dependent
variable (Y) to the values of one independent Ve (linear model and some non-linear modelgtst
with a given bivariate data set and uses the L8geares Method to assign the besssible values to the

unknown multipliers found in the models we wisledimate. The bivariate data, used to estimatértbar
model and some non-linear models, consists of aretdpairs of values:

(X0 Y2)s (%25 ¥2) ey (X0 Yi)
The linear model we wish to estimate, using thegidata, is:

y =a+ bx )
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while the non-linear models of interest are givgn b

y = ke (Exponential Model) (2)

y = ax? (Power Model) (3)
and

y = a + bx + cx? (Quadratic Model) (4)

To estimate model (1) we use the Least Squaresddelbgy, which calls for the formation of the
guadratic function:

2
Q(a, b) = Zlnzl[yactual - ylinearequation] = Zzn:1 yiz - Zazlnzl Vi — 2b Z?:lxiyi + 2ab 2?21351' + bz Z?:lxiz (5)
To derive the “normal” equations for the linear rabftom which the values @& andb of the linear

model are obtained, we take the partial derivativ€®(a,b) of equation (5) with respect to a anddi,each
equal to zero, and then simplify:

The result is:
9Q@b)__ 2>y, +2b) x+2an
oa i=1 i=1 (6)
and

6Q(a, b) ——ZZX y +2az X +2bZ>g
(7)

When (6) and (7) are set equal to zero and simplifive obtain the “Normal” equations for the
linear model:

n a+ban X =iyi
i=1 i=1
ay x+h) x'=) xy,
i=1 i=1 i=1

(8)

(9)

The only unknowns in equation (8) and (9) areand b and they should be solved for them
simultaneously, thus deriving (or estimating) threedr model. This is so because all the other gabfe
equations (8) and (9) come from the given datafehe

n = number of ordered pairg(V;)

Z)ﬁ =X, +X, ...+ X, = sum of the x values
i=1

Zyi =y, +Y,+...+ y,= sum of the y values

i=1

n
D x2=x2+X2 +...+ X2= sum of the given x values, which are first sqdare
i=1

n
in Y =XY, XY, +...+ X,y,= sum of the products of theandy; values in each ordered pair.
i=1
Note: The values of (a) and (b) obtained from tloenhal equations correspond to a minimum value
for the Quadratic function Q(a,b) given by equati), as can be easily demonstrated by using the
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Optimization methodology of Differential Calculusr ffunctions of 2 independent variables.

To complete the Estimation of the Linear model wedto find the standard deviation forcéa),
and b,o(b), which are needed for testing of the signifmanf the model. The standard deviatias(s,), and
o(b), are given by:

/2

. { 2 éﬁ

o] A B

ixiz _\i=1

L i=1 n B (10)
and
g
a(b)=— :
{Z(& -X)’
i=1 , (11)
where:
n n n 2
Dy -aY %—b Xy
o= iz i=1 i=1
n-2
(12)
2V 2
Thea andb in equation (12) come from the solution of equadi@8) and (9) whileé= ,i=2 | and
%Y,
i=1 come directly from the given bivariate data.

2. Model Testing

Now that our model of interest has been estimatedneed to test for the significance of the terms
found in the estimated model. This is very imparta@cause the results of this testing will deteartime
final equation which will be retained and usedForecasting purposes.

Testing of the linear model consists of the follogysteps:

2.1. Testing for the significance of each term sepately
Here we test the hypotheses:

1. H:B=0vsH:B#0,and
2. He:a =0vs H: a #0, based on our knowledge ofdgb), a, ands(a).

If n >30,we calculate
«_ b
=

o(b)
and
a

o(a)

and compare each tq,Z(where Z..is a value obtained from the standard Normal Talsiena, or
1 -q, is specified).
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For example i = 0.05, %> = Zo.025= 1.96; ifa = 0.10, 4 = Zoos = 1.645; ifa = 0.02, % = Zoo1l
=2.33 and ifa = 0.01, Zp = Zp.0os= 2.58).

If Z"y > Zo2 (Or Z'» < -Zar2), the hypothesis &13 = 0 is rejected and we conclude tBat 0 and the
term bx (in the estimated modgta+bx) is important for the calculation of the valof y. Similarly, if Z, >
Zap (Or Za < -Zu2), Ho: o = 0 is rejected, and we conclude that the linepraony=a+bx does not go
through the origin.

If n <30, we calculate

t; :L
g (b)
and
t;:i
g (b)

and compare each texqp), for a givena value, wherdn.z@) is obtained from the t-distribution
table, with the same interpretation fog. |8 = 0 and H: a = 0 as above.

But, instead of hypothesis testing, we can const@anfidence Intervals fop and a using the
equations:

P[b—Zy/y0(b) < B < b+ Zyjpo(b)] = 1- (13)
and, if n> 30,

Pla—Zy y0(a) Sx< a+Zy po(a)] = 1-x (14)
or

P[b — ty—z(/2y0(b) < B < b + ty_p(/20(b)] = 1- (15)
and, if n < 30,

Pla — th_z(/20(a) SX< a + ty_p/2y0(@)] = 1- (16)

If the hypothesized valuef: = 0O falls inside the Confidence Intervals givendguations (13) or
(15), ora = O falls inside the Confidence Intervals given dxyuations (14) or (16), the corresponding
hypotheses ki3 = 0 and H: a = 0 are not rejected and we conclude fhat0 (and b = 0 and the term bx is
not important for the calculation of y) and= 0 (i.e. a = 0 and the line goes through zefdirla given data
set, we performed the above-discussed tests, webtdin one of 4 possible conclusions:

A) Ho: B =0 and H: a = 0 are both rejected; Theref@e 0, anda # 0, and both the tern@sandbx
are important to the calculation of y. In this cése final equation ig=a+bx, with both terms staying in the
equation.

B) Ho: B = O is rejected, butdda = 0 is not rejected. Therefofez 0 buta = 0 and the term is not
important to the calculation of y. In this case fimal equation isy=a+bx, with the terna dropping out of
the equation.

C) Ho: B = 0 is not rejected butda = 0 is rejected. Therefof@ = 0 and the ternibx is not
important for the calculation of y, whileZa0 and is important to the calculation of y. Instiease the final
equation iy = a, with the ternbx dropping out of the equation

D) Ho: B = 0 and H: a = 0 are both not rejected; Therefde 0, anda = 0, and both terma and
bx are not important to the calculation of y. In th&se the final equation will Be= 0, with both terms
andbx dropping out of the equation.
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2.2. Testing for the Significance of the Entire Liear Equation

This test consists of testing the hypothesis:

1. Ho:a =B =0vs H: aandp are not both equal to 0, or

2. Ho: The Entire Regression equation is not signifioanth: The Entire Regression equation is
significant

For a given bivariate data set and a giseralue, we need to first calculate:

o

TotalSumof Squares Y (y, =¥)? =) y? -~= (17)
im1 i-1 n
n 2
n n n ( )(1]
Regressiogumof Squaress RS§ =Y _ (¥, = ¥)> =b* Y (x =X)* =b*| D% —% (18)
i=1 i=1 i=1
ErrorSumof Squaress ESS=Y (v, - 9)° =Q* =Y y?-a) y, =b>_xy, (19)
i=1 i=1 i=1 i=1
n 2
5
Sumof Square®ueto theConstant S§ =~~~ (20)
n
Then we calculate:
. _(RSS+SS)/2
Total ESS/ n-2 (21)

and compar€ towm to F%2(@), Which is a tabulated value, for a specifiestalue. IfF row > Foh-2(a),
we rejectHp and conclude that the entire regression equatienyEa+bx) or that both the constant teamn
and the factor x (and terbx) are significant to the calculation of the y valaignultaneously.

Note 1:

When TSS, RS and ESS are known, we can also define the camifiof determination R2,
where:

w2 _RSS_, ESS
TSS ~ TSS (22)

where 0< R? < 1, which tells us how well the regression equafiena + bx fits the given bivariate
data. A value of R close to 1 implies a good fit.
Note 2:

r = correlation coef ficient = VR? (23)

2.3. A Bivariate Example
A sample of 5 adult men for whom heights and weigite measured gives the following results
(Table 1):
Table 1. Given bivariate data set (n =5)
X=H | y=W| x*=H? | y>=W? | xy = HW
64 130 642 1302 64 x 13
65 145 652 1452 65 x 14
66 150 662 1502 66 x 15
67 165 672 1652 67 x 16
68 170 682 1702 68 x 17

O OO UuUrOo
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For this Bivariate Data set we have: n=5

5
D> x  =64+65+66+67+68=330
i=1

5
Z x? =642 +652 +662 +672 +682= 21,790
i=1

5

Z y, =130 +145 +150 +165 +170 =760

i=1

2 _

y; =1302+1452+1502+1652+170%=116,550

DM 1D

!
iy

Xy, =(64x130) +(65x 145) +(66 X 150) +(67 x 165) +(68x 170) = 50,260

2% X XY
To obtain the linear equatign= a + bx, we substitute the values ofia, , =2, i=
to equations (8) and (9) and obtain:

{ 5a +330b = 760
330a + 21,790b = 50,260

When these equations are solved simultaneouslybtaéno a = -508 and b = 10, and the regression
equation is

y =a+bx =—-508 + 10x.

5 5 5
2V XY,
Then, using the values of a = -508, b=10, and , =2 andi= we obtain from equation (12):

&:[116, 550-(-500)(7607 (1050 260T :[%OT - /10=3.16228

and from equations (10) and (11):

1/2

1/2 1/2
a(a)_@ 21790 | - \/E{ 21790} :[Zx 21,790} _ 4358 66.015
J5 (330 10 10
21790—?
_ J10 _ V10 _v10_,
U(b)_ 12 \/—0
21700207 [0
5
Since n=5<30a andb are distributed a&—z :t3variables and whea = 0.05, #(0/2) = $(0.025) =
= +3.1824.

Then the hypothesessH3 =0 vs. H: B#0, and H: o= 0 vs. H: a # 0 are both rejected because
a -508

= 5@ 66015 = —7.695 < —3.1824

and

t; = =" =10>3.1824
b7 eb) T 1
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Therefore, the final equation is
y =a+bx =—-508 + 10x.
To test for the significance of the entire equatiand to calculate the coefficient of determination
we first evaluate, TSS, REESS, SSusing equations (17) — (20) and obtain:

2
TSS=116,550 @ =1030

RSS =1o{ 21,790—G3TQT=102 (L0) =1000
ESS=116,550- (-508)(76Q - 10(50,260)= 30

2
S§ = @ =115,520

From equation (22), we obtair? R 1000/1030= 0.971, which tells us that 97% of the variation in
the values of Y can be explained (or are accoufmgdy the variable X included in the regressiguation
and only 3% is due to other factors. SinéésRtlose to 1, the fit of the equation to the dateery good.

Note:

The correlation coefficient r, which measures tinergjth of the linear relationship between Y and X
is related to the coefficient of determination by:

r=JR? =./097=0.985

for this example. Clearly X and Y are very stronighgarly related.
Using equation (21) we obtain:

_(RS$+SS)/2_(1000+115520)/2_ 58260
TRl ESe/n-2 30/3 10

=5,826

whenF o is compared to

10.13 if a=0.05

F2,(a)=F}(a)=
r2(@)=F;(@) {34.12 if =0.01

Ho (The entire regression equation is not signifitéstrejected, and we conclude that the entire
regression equation is significant.

3. MINITAB Solution to the Linear Regression Problem
We enter the given data and issue the regressiramead as shown in Table 2.

Table 2. Data set in MINITAB
MTB > Set C1
DATA> 64 65 66 67 68
DATA> end
MTB > set C2
DATA> 130 145 150 165 170
DATA> end
MTB > Name C1 X' C2'Y"
MTB > REGRESS 'Y'1 'X'

and obtain the MINITAB output presented in Tabld &ble 4, and Figure 1.
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Table 3. Regression Analysis: Y versus X

Regression equation: | Y =-508 + 10.0 X
Predictor Coef SE Coef T p
Constant -508.000 66.020 -7.700 0.00
X 10.000 1.000 10.000 0.002
Regression fit: S R-Sq R-Sq (adj)
3.162 97.1% 96.1%
Analysis of Variance:
Source DF SS MS F p
Regression 1 1000.0 1000.0 100.0 0.002
Residual Error 3 30.0 10.0
Total 4 1030.0

Table 4. Correlations: Y, X

Pearson correlation of Y and X 0.985
P-Value 0.002
170 — .
*
160 —
> 150 — .
*
140 —
130 —
| | | | |
64 65 66 67 68

X
Figurel. PlotY * X

When we compare the MINITAB and hand solutionsytlage identical. We obtain the same
equationy = -508 + 10x, the same standard deviationsafandb (under SE Coefficient) and the same t
values, the same?Rthe same s & andc? = 10. Notice also that an Analysis of Variancdegirovides the
values for RS§ ESS, and TSS. The only value missing ig 88ich can be easily calculated from

)

SS=

n

The MINITAB solution also gives a p-value for eacbefficient. The p-value is called the
“Observed Level of Significance” and representsgrabability of obtaining a value more extreme thiae
value of the test statistic. For example the p@dhr the predictor X is calculated as p = 0.00%] & is
given by:

p-value=P(t>t*=10)= jl"; f(t)dt= 0002 (24)

The p-value has the following connection to thestelda-value.
If p=a, do not reject ki
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If p<a,reject B
Since p = 0.002 & = 0.05, H: B = 0 will be rejected.

4. Introduction and Model Estimation for Some Non-Linear Models of Interest

Sometimes two variables are related but their icglahip is not linear and trying to fit a linear
equation to a data set that is inherently non-fingh result in a bad-fit. But, because non-lingagression
is, in general, much more difficult than linear negsion, we explore in this part of the paper esiion
methods that will allow us to fit non-linear equeis to a data set by using the results of linegiression
which is much easier to understand and analyze.

This becomes possible by first performing logarithtnansformations of the non-linear equations,
which change the non-linear into linear equati@msl then using the normal equations of the lineadehto
generate the normal equations of the “linearizedh-linear equations, from which the values of the
unknown model parameters can be obtained. In #pempwe show how the exponential moget, ke, and
the power modely = a¥ (for btl) can be easily estimated by using logarithmiagfarmations to first
derive the linearized version of the above nondireguations, namely:

Iny =Ink +cx
and
Iny=Ina+blnx

and then comparing these to the original linearaéqo,y = a + bx, and its normal equations (see
equations (8) and (9)).

Also discussed is the quadratic modek a + bx + cx which, even though is a non-linear model,
can be discussed directly using the linear mettogyolBut now we have to solve simultaneously aesyst
of 3 equations in 3 unknowns, because the normadtans for the quadratic model become:

”a+bixi +°anxi2 :Zn:yi
= = i=1
aZn:Xi +bZn:Xi2 +Ci><? :Zn:Xyi
i=1 i=1 i=1 i=1

(25)

azn:xf +bzn:)(i3 +Czn:)(i4 :i)(izyi
= = = i=1

A procedure is also discussed which allows us ttahfesse four models (i.e. linear, exponential,
power, quadratic), and possibly others, to the sdate set, and then select the equation whichhigslata
set “best”. These four models are used extensiwveliprecasting and, because of this, it is impdrtan
understand how these models are constructed andMIDIWTAB can be used to estimate such models
efficiently.

4.1.The Linear Model and its Normal Equations

The linear model and the normal equations assakiaith it as explained above, are given by:

Linear Model

y =a+ bx D

Normal Equations

na+ bi X = i Y; (8)
i=1 i=1

aZn:xi +bZn:xi2 :Zn:xyi 9)
i=1 i=1 i=1
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4.2.The Exponential Model
Theexponential modat defined by the equation:

9 = keCX (26)

Our objective is to use the given data to findlikst possible values for k and c, just as our tibgc
in equation (1) was to use the data to find the (deshe least-square sense) values for a and b.
Taking natural logarithms (i.e. logarithms to tteesé e) of both sides of equation (26) we obtain

In(y = ke™)
or
Iny =In(ke™) (27)

4.2.1. Logarithmic Laws
To simplify equation (27), we have to use soméheffbllowing laws of logarithms:

i) log (AB)=1logA+logB (r8
i) log (A/B) =log A—logB (29)
iii) log (A") =nlogA (30)

Then, using equation (28) we can re-write equatin as:
Iny=Ink+Ine™ (31)

and, by applying equation (30) to the second tefrth@ right hand side of equation (31), equation
(31) can be written finally as:

Iny=Ink+cx(Ine)
or
Iny=Ink+cx (because Ine = leg = 1) (32)

Even though equation (26) is non-linear, as camdrdied by plotting y against x, equation (32) is
linear (i.e. the logarithmic transformation changegiation (26) from non-linear to linear) as carvéefied
by plotting: In y against x.

But, if equation (32) is linear, it should be sianilto equation (1), and must have a set of normal
equations similar to the normal equations of thedr model (see equations (8) and (9)).

Question How are these normal equations going to be ddflv

Answer We will compare the “transformed linear modeélg. equation (32), to the actual linear
model (equation (1)), note the differences betwibese two models, and then make the appropriategelsa
to the normal equations of the linear model to inldize normal equations of the “transformed lineadel”.

4.2.2. Comparison of the Logarithmic Transformed Exponental Model to the Linear Model
To make the comparison easier, we list below theg@els under consideration, namely:
a) Original Linear Model:
y =a + bx (1)
b) Transformed Linear Model:

Iny=Ink+cx (32)

Comparing equations (1) and (32), we note theatlg three differences between the two models:
i. y in equation (1) has been replacedmy in equation (32)

ii. ain equation (1) has been replacediok in equation (32)

iii. b in equation (1) has been replacedchiy equation (32)
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4.2.3. Normal Equations of Exponential Model
When the three changes listed above are applidtetoormal equations of the actual linear model

(equations (8) and (9)), we will obtain the nornegjuations of the “transformed model”. The normal
equations of the “transformed linear model” are:

n(ink) + cZn: X = Zn: Iny, (33)
(In k)zn“xi +czn:xi2 :Zn:xi (Iny,) (34)
i=1 i=1 i=1

In equations (33) and (34) all the quantities arevkn numbers, derived from the given data as will
be shown later, except for: kiand ¢, and equations (33) and (34) must be savedltaneously for Ik and
C.

Suppose that for a given data set, the soluti@gtmtions (33) and (34) produced the values:

Ik=0.3 and c=1.2 (35)

If we examine the exponential model (equation (26} observe that the value of c = 1.2 can be
substituted directly into equation (26), but wera yet have the value of k; instead we have ttheevaf In
k=0.3!

Question If we know: Ink = 0.3, how do we find the value of k?

Answer If In k= 0.3, then: k =% =(2.718281828)* =1.349859

Therefore, now that we have both thandc values, the non-linear model, given by equatid@),(2
has been completely estimated.

4.3.The Power Model

Another non-linear model, which can be analyzed Bimilar manner, is the Power Model defined
by the equation:

y=ax (36)

which is non-linear if £ 1 and, as before, we must obtain the best possitles for a and b (in the
least-square sense) using the given data.

4.3.1. Logarithmic Transformation of Power Model
A logarithmic transformation of equation (36) proda the “transformed linear model”

Iny=Ina+blnx (37)

When equation (37) is compared to equation (1)nete the following 3 changes:

i. yin equation (1) has been replacediby in equation (37)

ii. ain equation (1) has been replacedtbg in equation (37) (38)
iii. xin equation (1) has been replacedty in equation (37)

When the changes listed in (38) are substitutedl éufuations (8) and (9), we obtain the normal
equations for this “transformed linear model” whate given by equations (39) and (40) below:

4.3.2. Normal Equations of Power Model

n(ln a)+bZn:In X; :anln Y, (39)
(In a)Zn:In X + bZn: (Inx)? = Zn:(ln x)(ny,) (40)
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Equations (39) and (40) must be solved simultarigdas(In @) and b.
If In a = 0.4, then a =% =~ (2.718251828)* = 1.491825 and, since we have numerical values for

botha andb, the non-linear model defined by equation (36) thesn completely estimated.

4.4.Derivation of the normal equations for the Quadratc model,y = a + bx + cX
To derive the normal equations of the quadraticehddst form the function

Q(a,b,c) = i[yI -a-bx - c>q2]2 (41)

Then take the partial derivative%:g, 6_Q Z—Q,and set each equal to 0, to obtain the 3 equations
a C
needed to solve for a, b, c.
We obtain:

Q5% -a-bs-of] (-0

=
or:
na+ bzn: X + czn: X} = zn: Y, (42)
= i=1 i=1
g_(s:+22n:[yi -a-—bx —C)QZ] (—xi): 0,
i=1
or:
azn: X + bzn: x> + czn: x® = Zn: XY, (43)
i=1 i=1 i=1 i=1
a n
=2y by -a-bx -o¢] (x)-=0
i=1
or:

2> +bY X +0Y K =YK, (44)
i=1 i=1 i=1 i=1

Equations (42), (43), and (44) are identical toatigum (25).

4.5.Data Utilization in Estimating the 4 Models

To generate the quantities needed to estimate thedéls:

a. The Linear Model

b. The Exponential Model

c. The Power Model,

d. The Quadratic Model,

the given (X, y) bivariate data must be “manipuates shown in Tables: 5, 6, 7, and 8, respectively

4.5.1. Given Data to Evaluate the Linear Model

Table 5. Manipulation of Given Data to Evaluate the Lineaodi|

X y Xy X

X Vi X1y1 X1
% ¥ X2Y2 X2
% ¥ Xay3 Xa
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- - = X.ﬁ. .an
n n n n 2

Z X Z Y, Z XY, Z X
i=1 im1 =1 i1

N N N N

To evaluate y = a + bx, substitutei, W2, N3, Ns into equations (8) and (9) and solve for a and b
simultaneously.

4.5.2. Given Data to Evaluate the Exponential Model

Table 6. Manipulation of Given Data to Evaluate the Exporedritiodel

X y X2 Iny xIny
X1 i 2 Iny:
X X Ony,

< [ Ty,

< e ™ ey,

1o e ™ | iy,
i X Zn: Zn: x? Zn: In i X In
2% | Y | K| . Yi | %Y
i=1 i=1 i=1 i=1 i=1

N5 Ne N7 Ns N9

To evaluatey = kéx, substitute B N7, Ns, Ng into equations (33) and (34) and solve fokland c
simultaneously.

4.5.3. Given Data to Evaluate the Power Model

Table 7. Manipulation of Given Data to Evaluate the Poweudé|

X y In x (In x)? (Inx)(In'y) Iny

X1 Vi In x; (In x1)? (|n Xj)(m y]) Inyi

I T I T (Y

< ™ iy |

Xn Yo Inx, (In x)? (inx, .).(.In v) inyn
DX 2y | x| D(nx)? [ D (nx)(Iny;) | YIny,
i=1 i=1 i=1 i=1 i=1 i=1

N1o N11 N1o Ni3 N14 Nis

& Ah
To evaluatey_ax , Substitute M, Nis, Nis, Nis into equations (39) and (40) and solve
simultaneously for (I@) and b.
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4,5.4. Given Data to Evaluate the Quadratic Model

Table 8. Manipulation of Given Data to Evaluate the Quadrddodel

X y X2 x3 Xy x4 X2y
X1 Y1 X2 X3 X1y1 X X12Y1
X2 Yo X2 X2> XaY2 X2* X2?Y2
X3 Y X3 3> XaY3 xa* X3%Y3
Xn Yh X X XY X Xn?Yn
n n n n n n n
2 3 4 2
in ZYi in in inyi in in Yi
i=1 i=1 i=1 i=1 i=1 i=1 i=1
N1e N7 Nig N1 N2o No1 N2>

To evaluatey = a + bx + cx?, substitute N, Ni7, Nig, Nis, Nao, N21, N2 into equations (42),
(43), and (44), and solve simultaneously for arig c.

5. Selecting the Best-Fitting Model

5.1.The Four Models Considered
Given a data set {(xy), we have shown how to fit to such a data set @ifferent models, namely:

a. Linear:

Y, =a+bx (45)
b. Exponential:

Ji = ke (46)
c. Power:

R

Yi =ax (47)
d. Quadratic:

¥, = a+bx, +cx? (48)

We might decide to fit all four models to the samla¢a set if, after examining the scatter diagram of
the given data set, we are unable to decide wHithed'4 models appears to fit the data BEST.”

But, after we fit the 4 models, how can we tell gthmodel fits the data best?

To answer this question, we calculate the “variapicthe residual values” for each of the models,
and then “select as the best model” the one wélsthallest variance of the residual values.

5.2.Calculating the Residual Values of Each Model and feir Variance

Use each ixvalue, of the given data set;,(¥), to calculate the)A/i value, from the appropriate
model, and then for each i, form the residual:

Residualof observatios= (y. - .) , (49)

for each i.
Then the variance of the residual values is defmed

. 1 N
V (Residualy —— -~ )? 50
( ¥ DOF;(Y. %) (50)
where DOF = Degrees of Freedom.

Note The DOF are DOF = n — 2 for the first three msdkinear, Exponential, Power) due to the
fact that each of these 3 models has 2 unknowntijearthat need to be evaluated from the datan@b, k
andc, anda andb, respectively) and, as a consequence, 2 degreiesegfom are lost. For the Quadratic
model, DOF = n — 3 because the model has 3 unkrmyvemtities that need to be estimated and, as a
consequence, 3 degrees of freedom are lost.
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Using equation (50) to calculate the variance efrésiduals for each of the 4 models, we obtain:

V (Residualnea= nfzé(yi —a-bx)’ (51)
=nf12[(yl —a-bx ) +(y, —a-bf +ot(y,—a-bx )| (62)

V (Residuabyponeni= nizg(y‘ kY (53)
= ke o (y, ke ot (y, ko] (54)

V (Residuabowe= nizg(y‘ —ax’)’ (55)
= -y (v, — k) ey, - )] (56)

V (Residuabuadrati= n—igi(yi —a-bx -cx)? (57)

i=1

i nis[(”_a_bxl‘cxf)2 +(y, —a-bx, ~0%) + .+ (y, —a-bx, —ox)?|  (59)

After the calculation of the 4 variances from equa: (52), (54), (56), and (58), the model witk th
“smallest” variance is the model which fits theapvdata set “best”.

We will now illustrate, through an example, how thenodels we discussed above can be fitted to a
given bivariate data set, and then how the “besti@hfrom among them is selected.

5.3. A Considered Example
A sample of 5 adult men for whom heights and weigite measured gives the following results
(Table 9).
Table 9. Sample of 5 adult men

# | X=Height | Y =Weight
1 64 130
2 65 145
3 66 150
4 67 165
5 68 170

Problem: Fit the linear, exponential, power, anddratic models to this bivariate data set and then
select as the “best” the model with the smalleswae of the residual values.

5.3.1. Fitting the Linear Model § =a + bx
To fit the linear model, we must extend the givewabate data so that we can also calculate

n n
inz andZXi Y;, as shown below, in Table 10:

i=1 i=1
Table 10. Calculations for bivariate data of 5 adults for theear model
X2 X y Xy
4096 64 130 8320
4225 65 145 9425
4356 66 150 9900
4489 67 165 11055
4624 68 170 11560
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5 5 5 5
D x?=21,790| D X =330| )Y, =760| DX Y;=50,260
i=1 i

i=1 i=1 i=1

We then substitute the generated data into the aloeguations for the linear model, namely
equations (8) and (9):

na+ bzn:xi =Zn:yi
i=1 i=1
aixi +bixi2 :ixi Yi
i=1 i=1 i=1

and obtain the equations:

{ 5a +330b = 760
330a + 21,790b = 50,260

When these equations are solved simultaneousky &db we obtain:

{a = —508, and
b=10

Therefore, the linear model is:
y =a+bx =-508 + 10x
The variance of the residual values for the limaadel is calculated as shown below, in Table 11:

Table 11. Variance of the residual values for the linear mlod

Given X | Given 'Y Calculated Y Residual (ResiduaP)
X y ¥/ =-508 + 10x y- Yy - ¢V
64 130 -508 + 10 (64) = 13 -2 4
65 145 -508 + 10 (65) = 14 +3 (#3)9
66 150 -508 + 10 (66) = 15 -2 x4
67 165 -508 + 10 (67) = 162 +3 (#3)9
68 170 -508 + 10 (68) = 172 -2 x4

5

AN2
D=9 =
i=l

Therefore, the variance of the residual valuestierinear model is:

V(ReSidual_inear—

52~ =515 80 =2=10

5.3.2. Fitting the Exponential Modely = ke
To fit the exponential model we need to extendgiven bivariate data so that we can calculate, in

addition toZ)g =330 and Z)ﬁ =21,79( Zln y, and Z(X Iny, ) as shown below, in Table 12:

i=1 i=1 i=1 i=1

Table 12. Calculations for bivariate data of 5 adults for tagponential model

X2 X y Iny xOny
4096 64 130 4.8675 311.5200
4225 65 145 49767 323.4855
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4356 66 150 5.011 330.726

4489 67 165 5.1059 342.0953

4624 68 170 5.1358 349.2344
5 5 5 5 5
DX =21,79(| Y x =330 | D'y, =760 | Y Iny, =25.0966474 Y x (ny, =1657.04468
i=1 i=1 i=1 i=1 i=1

We then substitute the generated data into the aloequations for the exponential model (i.e.
equations (33) and (34)):

n(Ink) +ci X = iln Y,
i=1 i=1

(Y% +€Y ¢ =Y x (ny,) .

and obtain the equations:

{ 5Ink + 330c = 25.0967
30Ink +21,790c = 1657.0447

When these equations are solved simultaneouslinferand c, we obtain: ¢ = 0.06658 and Ink =
0.6251, or: k = ®52°1=1.868432
Therefore, the exponential model is:

J =ke™* =1.868436°000%%

or
Iny=Ink+cx =0.6251 + 0.06658x

Then, the variance of the residual values, foretkgonential model, is calculated as shown below, in
Table 13:

Table 13. Variance of the residual values for the exponémtiadel

X y y = ke™ =1.868432 g 0ses8x |y - W4 (y- 9 )?
64 | 130| 1.868432086658064= 132 4515/ -2.451% 6.0099
65 | 145| 1.8684320866586% = 141 5703 3.4297 11.7628
66 | 150| 1.8684320866580¢ = 151 3169 -1.3169 1.7324
67 | 165| 1.86843208665867 = 161.7346| 3.2654 10.6630
68 | 170| 1.8684320866586¢ = 172 8694 -2.8694 8.2336
5
Y (y, - §;)? = 384035
i=1

Therefore, the variance of the residual valuestierexponential model is:

V(Residubpmens=—2— (v~ §)2 = 3 (y, —ke?*)?
= n—-243

n-—24

18 ?

= =3[y, ~1.868432 7% |
S-1%F

- 384035 _ 12.8017
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5.3.3. Fitting the Power Modely = a¥

To fit the power model we need to extend the gibevariate data set to generate the quantities:

n n n n
Z Inx , Z(In X )?, Zln Yy, and Z(ln X )(Iny;), and this is accomplished as shown below, in Table

i=1 i=1 i=1
14:
Table 14. Calculations for bivariate data of 5 adults for thewer model
X |y In x (In x)? Iny (Inx)(Iny)
64| 130] 4.158883 17.296308%5  4.867553 20.2435
65| 145| 4.1738727 17.42550908 4.976734 20.7723
66 | 150| 4.189654742 17.55320686 5.010635 20.9928
67 | 165| 4.204692619 17.67944002 5.105945 21.4689
68 | 170| 4.21950770p 17.80424527 5.135798 21.6705
5 5 5 5
2

dinx | D(nx)? | YIny, | Y.(nx )(ny,)

i= i= i= i=1

=20.9471 =87.7581 =25.0967 =105.1505

We then substitute the generated data into the adosguations of the power model, namely
equations (39) and (40):

n(Ina)+bZn:In>q :Zn:In Y,
(In a)Zn:In X +bZn:(In x)% = Zn:(ln x)(Iny,)

i=1
and obtain the equations:

{ S5Ina + 20.9471b = 25.0967
20.9471Ina + 87.7581b = 105.1505

When these equations are solved simultaneously &ord Ina we obtain:

{b = 4.3766,and
Ina = —-13.316

Therefore, the “linearized” power model becomes:
Iny=Ina+blnx =—-13.316 + 4.3766x

Then the variance of the residual values for thegsanodel is obtained as shown below:

Table 15. Variance of the residual values for the power nhode

Iny=Ina+blinx -~ A Y
=-13.316 + 4.3766 Y Yy v-y)

64 | 130| 4.158883 In y1=4.885768 | 132.3920| -2.3920, 5.721664
65| 145| 4.173873 In y2=4.95623 | 141.6874| 3.3126 10.973319
66 | 150| 4.18965% In Yy 3=5.020443 | 151.4784| -1.47843 2.185667
67 | 165| 4.204693 In y4=5.086258 | 161.7833| 3.2167 10.347159
68| 170| 4.219508 In ys5=5.151097 | 172.6208 -2.6208 6.868592

Z(yi-i'i)z

i=1
= 36.09640

X y In x
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Therefore, the variance of the residuals valuegh®power model is:

. 1 » _360964_
V(Residugdowe= n—2§(y‘_a)¢)) == -12.032

5.3.4. Fitting the Quadratic Model,§ = a + bx +cX
To fit the quadratic model, we need to use thergiviwariate data set and extend it to generate the
guantities:

D X =330 X =21,790)  X? =1,439,460)_ X = 95,135,074;
i=1 i=1 i=1 i=1

Zn‘,vi = 760;Zn: X.Y, =50, 260§: X2Y, = 3,325,270

i=1 i=1 i=1

We then substitute the generated data into the alagquations of the quadratic model (see equation
(25)), and obtain:

5a + 330b + 21,790c = 760
330a + 21,790b + 1,439,460c = 50,260
21,790a + 1,439,460b + 95,135,074c = 3,325,270

Solving these 3 equations simultaneously, we oldamn-25,236/7, b = 730/7, ¢ = -5/7. Therefore,
the quadratic functiog = f(x) is given by:

1
y =a+ bx +cx2= 7[—23,326 + 730x — 5x2]

The variance of the residual values for the quadrabdel is calculated as shown below, in Table

16:
Table 16. Variance of the residual values for the quadraticdel
.1 ~ ~
x|y y:7[—25, 326+ 730 -5x°] | vi- ¥ vi- ¥1)?
64 | 130 V¥ 1=130.5714286 -0.5714286| 0.326530644
65| 145 V2= 1427142857 2.2857143| 5.224489861
66 | 150 93 = 153.4285714 -3.4285714| 11.75510184
67 | 165 y 4= 162.7142857 2.2857143| 5.224489861
68| 170 95 =170.5714286 -0.5714286| 0.326530644

Z V- yi?
i=1

= 22.85714286

Therefore, the variance of the residual valuestferquadratic model is:

2 _ 2285714286

5
V(Residugdhuadraic ﬁz - %) =1142857143114286
921

5.3.5. Summary of Results and Selection of the “Bdviodel
We have fitted the 4 models: linear, exponenti@wer, and quadratic models, calculated the
respective residual variances, and have obtairetbtlowing results:
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a) The linear model is:

y = a+bx =-508 + 10x
with V(Residuakl}near= 10

b) The exponential model is:

¥ =ke* =1.86843@°00%%*
W|th V(Residualaxponentialz 128017

c) The power model is:

Iny=In a+blnx =-13.316 + 4.3766 In x
with V(ResiduaRower= 12.0321

d) The quadratic model is

§= a+bx +cx? = %[— 25326+ 730x - 5x2]
Wlth V(Resldualbuadratm: 114286

Since the linear model has the smallest variandbeofesidual values of the 4 models fitted to the
same bivariate data set, the linear model is thest"bmodel (but the other 3 values are very clofag
linear model, therefore, will be selected as thestbmodel and used for forecasting purposes.

6. MINITAB Solutions

To obtain the MINITAB solutions of the four modelge discussed in this paper we do the
following:

6.1. Finding the MINITAB Solution for the Linear Mo del
The data set used to find the MINITAB solution foe linear model is presented in Table 17.

Table 17. Data set in MINITAB for the linear model
MTB > Set C1

DATA> 64 65 66 67 68
DATA> end

MTB > set C2

DATA> 130 145 150 165 170
DATA> end

MTB > Name C1 X' C2 'Y"
MTB > REGRESS 'Y'1 X'
The results of the regression analysis for thealimeodel is presented in Table 18.

Table 18. Regression analysis: Y versus X for the linear rhode

Regression equation: | Y =-508 + 10.0 X
Predictor Coef SE Coef T p
Constant -508.00(0 66.020 -7.700 0.00
X 10.000 1.000 10.000 0.002
Regression fit: S R-Sq R-Sq (adj)

3.162 97.1% 96.1%
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Analysis of Variance:

Source DF SS MS F p
Regression 1 1000.0 1000.0 100.0 0.002
Residual Error 3 30.0 10.0

Total 4 1030.0

6.2. Finding the MINITAB Solution for the Exponential Model
The data set used to find the MINITAB solution foe exponential model is presented in Table 19.

Table 19. Data set in MINITAB for the exponential model
MTB > Set C1

DATA>64 65 66 67 68
DATA> end

MTB > set C2

DATA> 130 145 150 165 170
DATA> end

MTB > Name C1 X' C2'Y'
MTB > REGRESS 'Y'1 X'

The results of the regression analysis for the egptial model is presented in Table 20.

Table 20. Regression analysis: Y versus X for the exponemibalel

Regression equation: | Y =0.625 + 0.0666 X
Predictor Coef SE Coef T p
Constant 0.6251 0.4925 1.27 0.294
X 0.066580 0.007460 8.92 0.003
Regression fit: S R-Sq R-Sq (adj)

0.0235917 96.4% 95.2%

Analysis of Variance:
Source DF SS MS F p

Regression 1 0.044329 0.044329 79.65 0.003
Residual Error 3 0.001670 0.000557
Total 4 0.045999

6.3. Finding the MINITAB Solution for the Power Model
The data set used to find the MINITAB solution floe powemodel is presented in Table 21.

Table 21. Data set in MINITAB for the powenodel

MTB > Set C1

DATA> 4.158883; 4.1738727; 4.189654742; 4.204692@12195077
DATA> end

MTB > set C2

DATA> 4.867553; 4.976734; 5.010635; 5.105945; 5786

DATA> end

MTB > Name C1 'X' C2'Y"

MTB > REGRESS 'Y'1 X'

The results of the regression analysis for the poaael is presented in Table 22.
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Table 22. Regression analysis: Y versus X for the power model

Regression equation: | Y =-13.3 +4.38X
Predictor Coef SE Coef T p
Constant -13.316 2.069 -6.44 0.008
X 4.3766 0.4939 8.86 0.003
Regression fit: S R-Sq R-Sq (adj)

0.0237507 96.3% 95.1%

Analysis of Variance:

Source DF SS MS F p
Regression 1 0.044301| 0.044301 78.53 0.003
Residual Error 3 0.001692| 0.000564

Total 4 0.045993

6.4. Finding the MINITAB Solution for the Wuadratic Model
The data set used to find the MINITAB solution foe quadratienodel is presented in Table 23.

Table 23. Data set in MINITAB for the quadratinodel

MTB > Set C1

DATA> 64 65 66 67 68

DATA> end

MTB > set C2

DATA> 4096 4225 4356 4489 4624
DATA> end

MTB > SET C3

DATA> 130 145 150 165 170
DATA> END

MTB > NAME C1 'X1'C2 'X2' C3'Y"
MTB > REGRESS 'Y' 2 'X1' 'X2'

The results of the regression analysis for the qiBxdnodel is presented in Table 24.

Table 24. Regression analysis: Y versus X1, X2 forghadraticmodel

Regression equation: | Y =-3618 + 104 X1 - 0.714 X2
Predictor Coef | SE Coef T p
Constant -3618 3935 -0.92 0.455
X1 104.3 119.3 0.87 0.474
X2 -0.7143| 0.9035 -0.79 0.512
Regression fit: S R-Sq R-Sq (adj)

3.38062| 97.8% 95.6%

Analysis of Variance:

Source DF SS MS F p
Regression 2 1007.14 503.57 44.06 0.02p
Residual Error 2 22.86 11.43

Total 4 1030.00

Source DF Seg SS

X1 1 1000.00

X2 1 7.14
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7. Conclusions

Reviewing our previous discussion we come to tileviang conclusions:

The Linear Regression problem is relatively etsysolve and can be handled using algebraic
methods.

The problem can also be solved easily using abkgistatistical software, like MINITAB.

Even though the solution to Regression probleamshe obtained easily using MINITAB (or other
statistical software) it is important to know whhé hand methodology is and how it solves thesblenas
before you can properly interpret and understandIVAB’s output.

In general, non-linear regression is much moifecdit to perform than linear regression.

There are, however, some simple non-linear motles can be evaluated relatively easily by
utilizing the results of linear regression.

The non-linear models analyzed in this paper Brguonential Model, Power Model, Quadratic
Model.

A procedure is also discussed which allows ufittto the same bivariate data set many models
(such as: linear, exponential, power, quadratic) select as the “best fitting” model the model wiiie
“smallest variance of the residuals”.

In a numerical example, in which all 4 of thesedels were fitted to the same bivariate data set, w
found that the Linear model was the “best fit”, wthe Quadratic model “second best”. The Power and
Exponential models are “third best” and “fourth thesspectively, but are very close to each other.

The evaluation of these models is facilitatedsiderably by using the statistical software package
MINITAB which, in addition to estimating the unknowparameters of the corresponding models, also
generates additional information (such as the pejattandard deviations of the parameter estimaaois
R?).

This additional information allows us to perfornypothesis testing and construct confidence
intervals on the parameters, and also to get auneas the “goodness” of the equation, by usingvhlele
of R%. A value of R close to 1 is an indication of a good fit.

The MINITAB solution for the linear model showsat both a and b (gf= a + Ix = -508 + 18) are
significant because the corresponding p-valuesaaler thamn = 0.05, while the value ofR= 97.1%,
indicating that the regression equation explaind®y/of the variation in the y-values and only 2.8%lue
to other factors.

The MINITAB solution for the quadratic model shethat a, b, and ¢ (§¢f=a + x+ ¢ = -3,618
+ 104.% + 0.7143?) are individually not significant (because of twresponding high p-values, but b and
c jointly are significant because of the correspogg-value of p = 0.022 & = 0.05. The value of Rs: R
= 97.8%.

The MINITAB solution for the power model showsttboth a and b (of = a”or Iny=Ina+bn
x =-13.3 + 4.3766 Ix) are significant because the corresponding p-gadue smaller tham = 0.05, while
the value of R= 96.3%.

The MINITAB solution for the exponential modelosts that the k (i = ke =1.868432&00658xor
Iny =Ink+ ox=0.6251 + 0.06658x) is not significant becausthefcorresponding high p-value, while the
c is significant because of the corresponding pievdleing smaller tham = 0.05. The value of R= 96.4%.
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