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Regression Analysis is at the center of almost every Forecasting technique, yet few 
people are comfortable with the Regression methodology. We hope to improve the 
level of comfort with this article. In this article we briefly discuss the theory behind 
the methodology and then outline a step-by-step procedure, which will allow almost 
everyone to construct a Regression Forecasting function for both the linear and 
some non-linear cases. Also discussed, in addition to the model construction 
mentioned above, is model testing (to establish significance) and the procedure by 
which the Final Regression equation is derived and retained to be used as the 
Forecasting equation. Hand solutions are derived for some small-sample problems 
(for both the linear and non-linear cases) and their solutions are compared to the 
MINITAB-derived solutions to establish confidence in the statistical tool, which can 
be used exclusively for larger problems.  
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1. Introduction and Model Estimation for the Linear Mo del 

 
Regression analysis, in which an equation is derived that connects the value of one dependent 

variable (Y) to the values of one independent variable X (linear model and some non-linear models), starts 
with a given bivariate data set and uses the Least Squares Method to assign the best possible values to the 
unknown multipliers found in the models we wish to estimate. The bivariate data, used to estimate the linear 
model and some non-linear models, consists of n ordered pairs of values:  

 
(x1, y1),(x2, y2),..., (xn, yn) 

 
The linear model we wish to estimate, using the given data, is:  
 �	 = 	�	 + 	��         (1) 
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while the non-linear models of interest are given by 
 � = �	
� (Exponential Model)       (2) � = ���  (Power Model)                                                                       (3) 
 
and 
 � = � + �� + 
�� (Quadratic Model)       (4) 
 
To estimate model (1) we use the Least Squares Methodology, which calls for the formation of the 

quadratic function: 
 

���, �� = ∑ ���
���� − ��������������� ���!" = ∑ ��� − 2� ∑ ����!"��!" − 2� ∑ ������!" + 2��∑ ����!" + �� ∑ �����!"       (5) 

 
To derive the “normal” equations for the linear model from which the values of a and b of the linear 

model are obtained, we take the partial derivative of Q(a,b) of equation (5) with respect to a and b, set each 
equal to zero, and then simplify: 

The result is: 
 

∂Q(a,b)

∂a
=− 2 yi

i=1

n

∑ +2b xi

i=1

n

∑ +2an
       (6) 

and 

∂Q(a,b)

∂b
=− 2 Xi yi

i=1

n

∑ +2a xi

i=1

n

∑ +2b xi
2

i=1

n

∑
      (7) 

 
When (6) and (7) are set equal to zero and simplified, we obtain the “Normal” equations for the 

linear model: 
 

na+b xi

i=1

n

∑ = yi

i=1

n

∑
        (8) 

a xi

i=1

n

∑ +b xi
2

i=1

n

∑ = xi yi

i=1

n

∑
                                                                      (9) 

  
The only unknowns in equation (8) and (9) are a and b and they should be solved for them 

simultaneously, thus deriving (or estimating) the linear model. This is so because all the other values of 
equations (8) and (9) come from the given data, where: 

n =  number of ordered pairs (xi, yi ) 

xi

i=1

n

∑ = x1+ x2 +...+ xn = sum of the x values 

yi

i=1

n

∑ = y1+ y2 +...+ yn= sum of the y values 

xi
2

i=1

n

∑ = x1
2 +x2

2 +...+ xn
2= sum of the given x values, which are first squared 

xi yi

i=1

n

∑ = x1y1+ x2y2 +...+ xnyn= sum of the products of the xi and yi values in each ordered pair. 

Note: The values of (a) and (b) obtained from the Normal equations correspond to a minimum value 
for the Quadratic function Q(a,b) given by equation (5), as can be easily demonstrated by using the 
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Optimization methodology of Differential Calculus for functions of 2 independent variables. 
To complete the Estimation of the Linear model we need to find the standard deviation for a, σ(a), 

and b, σ(b), which are needed for testing of the significance of the model. The standard deviations, σ(a), and 
σ(b), are given by: 

 

σ (a)= σ̂
n
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n
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    (10) 
and   

    

σ (b)= σ̂

(xi − x)2

i=1

n

∑



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




1/2

  ,       (11) 
where:  

σ̂ =
yi

2

i=1

n

∑ −a yi

i=1

n

∑ −b xi yi

i=1

n

∑

n− 2



















1/2

      (12) 

The a and b in equation (12) come from the solution of equations (8) and (9) while 
yi

2

i=1

n

∑
,

yi

i=1

n

∑
, and 

xi yi

i=1

n

∑
 come directly from the given bivariate data.  
 
2. Model Testing  
 
Now that our model of interest has been estimated, we need to test for the significance of the terms 

found in the estimated model. This is very important because the results of this testing will determine the 
final equation which will be retained and used for Forecasting purposes. 

Testing of the linear model consists of the following steps: 
 
2.1. Testing for the significance of each term separately 
Here we test the hypotheses: 
1. H0: β = 0 vs H1: β ≠ 0, and 
2. H0: α = 0 vs H1: α ≠ 0, based on our knowledge of b, σ(b), a, and σ(a). 
 
If n ≥ 30, we calculate 

Zb
* = b

σ (b)  
and 

Za
* = a

σ (a)  
and compare each to Zα/2 (where Zα/2 is a value obtained from the standard Normal Table when α, or 

1 - α, is specified). 
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For example if α = 0.05, Zα/2 = Z0.025 = 1.96; if α = 0.10, Zα/2 = Z0.05 = 1.645; if α = 0.02, Zα/2 = Z0.01 
= 2.33 and if α = 0.01, Zα/2 = Z0.005 = 2.58).  

If Z *
b > Zα/2 (or Z*

b < -Zα/2), the hypothesis H0: β = 0 is rejected and we conclude that β ≠ 0 and the 
term bx (in the estimated model ŷ=a+bx) is important for the calculation of the value of y. Similarly, if Z*

a > 
Zα/2 (or Z*

a < -Zα/2), H0: α = 0 is rejected, and we conclude that the linear equation ŷ=a+bx does not go 
through the origin. 

If n < 30, we calculate 

tb
* = b

σ (b)  
and 

ta
* = a

σ (b)  
and compare each to tn-2(α/2), for a given α value, where tn-2(α/2) is obtained from the t-distribution 

table, with the same interpretation for H0: β = 0 and H0: α = 0 as above.  
But, instead of hypothesis testing, we can construct Confidence Intervals for β and α using the 

equations: 
 $�� − %∝ �⁄ (��� ≤ * ≤ � + %∝ �⁄ (��� = 1−∝     (13) 
 
and, if n ≥ 30, 

 $�� − %∝ �⁄ (��� ≤∝≤ � + %∝ �⁄ (��� = 1−∝     (14) 
 
or 
 $�� − ,�-��∝ �⁄ �(��� ≤ * ≤ � + ,�-��∝ �⁄ �(��� = 1−∝   (15) 

 
and, if n < 30, 

 
  $�� − ,�-��∝ �⁄ �(��� ≤∝≤ � + ,�-��∝ �⁄ �(��� = 1−∝    (16) 

 
If the hypothesized values: β = 0 falls inside the Confidence Intervals given by equations (13) or 

(15), or α = 0 falls inside the Confidence Intervals given by equations (14) or (16), the corresponding 
hypotheses H0: β = 0 and H0: α = 0 are not rejected and we conclude that β = 0 (and b = 0 and the term bx is 
not important for the calculation of y) and α = 0 (i.e. a = 0 and the line goes through zero). If for a given data 
set, we performed the above-discussed tests, we will obtain one of 4 possible conclusions: 

A) H0: β = 0 and H0: α = 0 are both rejected; Therefore β ≠ 0, and α ≠ 0, and both the terms a and bx 
are important to the calculation of y. In this case the final equation is ŷ=a+bx, with both terms staying in the 
equation. 

B) H0: β = 0 is rejected, but H0: α = 0 is not rejected. Therefore β ≠ 0 but α = 0 and the term a is not 
important to the calculation of y. In this case the final equation is ŷ=a+bx, with the term a dropping out of 
the equation. 

C) H0: β = 0 is not rejected but H0: α = 0 is rejected. Therefore β = 0 and the term bx is not 
important for the calculation of y, while a ≠ 0 and is important to the calculation of y. In this case the final 
equation is ŷ = a, with the term bx dropping out of the equation 

D) H0: β = 0 and H0: α = 0 are both not rejected; Therefore β = 0, and α = 0, and both terms a and 
bx are not important to the calculation of y. In this case the final equation will be ŷ = 0, with both terms a 
and bx dropping out of the equation. 
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2.2. Testing for the Significance of the Entire Linear Equation 
This test consists of testing the hypothesis:  
1. H0: α = β = 0 vs H0: α and β are not both equal to 0, or 
2. H0: The Entire Regression equation is not significant vs H1: The Entire Regression equation is 

significant 
 
For a given bivariate data set and a given α value, we need to first calculate: 
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Then we calculate: 
 

FTotal
* = (RSSb + SSa) / 2

ESS/ n− 2         (21) 
 
and compare F*

Total to F2
n-2(α), which is a tabulated value, for a specified α value. If F*

Total > F2
n-2(α), 

we reject H0 and conclude that the entire regression equation (i.e. ŷ=a+bx) or that both the constant term a, 
and the factor x (and term bx) are significant to the calculation of the y value, simultaneously. 

Note 1: 
When TSS, RSSb, and ESS are known, we can also define the coefficient of determination R², 

where:  
 

R2 = RSSb
TSS

=1− ESS

TSS          (22) 
 
where 0 ≤ R2 ≤ 1, which tells us how well the regression equation ŷ = a + bx fits the given bivariate 

data. A value of R close to 1 implies a good fit.  
Note 2: . = 
/..	0�,1/2	
/	331
1	2, = √5�      (23)  
 
2.3. A Bivariate Example 
A sample of 5 adult men for whom heights and weights are measured gives the following results 

(Table 1): 
Table 1. Given bivariate data set (n =5) 

x = H y = W x2=H2 y2=W2 xy = HW 
64 130 64² 130² 64 x 130 
65 145 65² 145² 65 x 145 
66 150 66² 150² 66 x 150 
67 165 67² 165² 67 x 165 
68 170 68² 170² 68 x 170 



Vasilopoulos, A., 2015. Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods. 
Expert Journal of Business and Management, 3(2), pp.205-228 

210 

 
For this Bivariate Data set we have: n = 5 

∑
=

5

1

330 = 68 + 67 + 66 + 65 + 64 =
i

ix  

21,790 = 68² + 67² + 66² + 65² + 64² =
5

1

2∑
=i

ix  

 760 = 170 + 165 + 150 + 145 + 130 =
5

1
∑

=i
iy  

  116,550 = 170² + 165² + 150² + 145² + 130² =
5

1

2∑
=i

iy  

  50,260 = 170) x (68 + 165) x (67 + 150) x (66 + 145) x (65 + 130) x (64 =
5

1
i

i
i yx∑

=

 

 

To obtain the linear equation ŷ = a + bx, we substitute the values of n, 
xi

i=1

5

∑
, 

xi
2

i=1

5

∑
,  

xi

i=1

5

∑ yi

  
to equations (8) and (9) and obtain: 

 

6 5� + 330� = 760330� + 21,790� = 50,260 

 
When these equations are solved simultaneously we obtain: a = -508 and b = 10, and the regression 

equation is ŷ = a + bx = −508 + 10x. 

Then, using the values of a = -508, b=10, and 
yi

i=1
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∑
, 

yi
2

i=1

5

∑
and

xi

i=1

5

∑ yi

we obtain from equation (12): 
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and from equations (10) and (11): 
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Since n=5<30, a and b are distributed as tn−2 = t3variables and when α = 0.05, t3(α/2) = t3(0.025) = 
= ±3.1824. 

Then the hypotheses H0: β = 0 vs. H1: β ≠ 0, and  H0: α = 0 vs. H0: α ≠ 0 are both rejected because: 

,�∗ = �(��� = −50866,015 = −7.695 < −3.1824 

and 

,�∗ = �(��� = 101 = 10 > 3.1824 
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Therefore, the final equation is ŷ = a + bx = −508 + 10x.  
To test for the significance of the entire equation, and to calculate the coefficient of determination, 

we first evaluate, TSS, RSSb, ESS, SSa using equations (17) – (20) and obtain: 
 

1030
5

)760(
 - 116,550 = TSS

2

=  

1000)10(10
5

)330(
790,2110 2

2
2 ==








−=bRSS  

3010(50,260)-)(-508)(760 - 116,550 = ESS =  

115,520 =
5

)760(
=  

2

aSS  

 
From equation (22), we obtain R2 = 1000/1030 ≈ 0.971, which tells us that 97% of the variation in 

the values of Y can be explained (or are accounted for) by the variable X included in the regression equation 
and only 3% is due to other factors. Since R2 is close to 1, the fit of the equation to the data is very good. 

Note: 
The correlation coefficient r, which measures the strength of the linear relationship between Y and X 

is related to the coefficient of determination by: 
 

 0.985 97.0=r 2 ==R  
 
for this example. Clearly X and Y are very strongly linearly related. 

Using equation (21) we obtain: 
 

5,826 =
10

260,58

3/30

2/)520,1151000(

2/

2/)(* =+=
−

+=
nESS

SSRSS
F ab

Total  

 
when F*

Total is compared to 
 

Fn−2
2 (α)= F3

2(α)=
10.13 if α = 0.05

34.12 if α = 0.01



    

 
H0 (The entire regression equation is not significant) is rejected, and we conclude that the entire 

regression equation is significant. 
 
3. MINITAB Solution to the Linear Regression Problem 
 
We enter the given data and issue the regression command as shown in Table 2.  
 

Table 2. Data set in MINITAB 
MTB > Set C1 
DATA> 64   65  66  67  68 
DATA> end 
MTB > set C2 
DATA> 130  145 150 165 170 
DATA> end 
MTB > Name C1 'X' C2 'Y' 
MTB > REGRESS 'Y' 1 'X' 

 
and obtain the MINITAB output presented in Table 3, Table 4, and Figure 1. 
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Table 3. Regression Analysis: Y versus X 
Regression equation:  Y = - 508 + 10.0 X 
  
Predictor Coef SE Coef T p 
Constant       -508.000 66.020 -7.700 0.005 
X 10.000 1.000 10.000 0.002 

Regression fit: S R-Sq R-Sq (adj)  
 3.162 97.1% 96.1%  
 
Analysis of Variance: 
Source             DF SS MS F p 
Regression 1 1000.0 1000.0 100.0 0.002 
Residual Error 3 30.0 10.0 
Total 4 1030.0 

 
Table 4. Correlations: Y, X 

Pearson correlation of Y and X 0.985 
P-Value 0.002 

64 65 66 67 68

130

140

150

160

170

X

Y

 
Figure 1. Plot Y * X 

 
When we compare the MINITAB and hand solutions, they are identical. We obtain the same 

equation ŷ = -508 + 10x, the same standard deviations for a and b (under SE Coefficient) and the same t 
values, the same R2, the same s = σ and σ2 = 10. Notice also that an Analysis of Variance table provides the 
values for RSSb, ESS, and TSS. The only value missing is SSa, which can be easily calculated from  

 

SSa =
yi

i=1

n

∑










2

n  . 
 
The MINITAB solution also gives a p-value for each coefficient. The p-value is called the 

“Observed Level of Significance” and represents the probability of obtaining a value more extreme than the 
value of the test statistic. For example the p-value for the predictor X is calculated as p = 0.002, and it is 
given by:  

002.0)( = 10) = * t>P(t  = value-p
10

=∫
∞

dttf      (24) 

 
The p-value has the following connection to the selected α-value. 
If p ≥ α, do not reject H0 
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If p < α, reject H0 
Since p = 0.002 < α = 0.05, H0: β = 0 will be rejected. 
 
4. Introduction and Model Estimation for Some Non-Linear Models of Interest 
 
Sometimes two variables are related but their relationship is not linear and trying to fit a linear 

equation to a data set that is inherently non-linear will result in a bad-fit. But, because non-linear regression 
is, in general, much more difficult than linear regression, we explore in this part of the paper estimation 
methods that will allow us to fit non-linear equations to a data set by using the results of linear regression 
which is much easier to understand and analyze. 

This becomes possible by first performing logarithmic transformations of the non-linear equations, 
which change the non-linear into linear equations, and then using the normal equations of the linear model to 
generate the normal equations of the “linearized” non-linear equations, from which the values of the 
unknown model parameters can be obtained. In this paper we show how the exponential model, ŷ = kecx, and 
the power model, ŷ = axb (for b≠1) can be easily estimated by using logarithmic transformations to first 
derive the linearized version of the above non-linear equations, namely: 

cxky += lnˆln  
and 

xbay lnlnˆln += , 
and then comparing these to the original linear equation, ŷ = a + bx, and its normal equations (see 

equations (8) and (9)). 
Also discussed is the quadratic model, ŷ = a + bx + cx2 which, even though is a non-linear model, 

can be discussed directly using the linear methodology. But now we have to solve simultaneously a system 
of 3 equations in 3 unknowns, because the normal equations for the quadratic model become: 
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A procedure is also discussed which allows us to fit these four models (i.e. linear, exponential, 

power, quadratic), and possibly others, to the same data set, and then select the equation which fits the data 
set “best”. These four models are used extensively in forecasting and, because of this, it is important to 
understand how these models are constructed and how MINITAB can be used to estimate such models 
efficiently. 

 
4.1. The Linear Model and its Normal Equations 
The linear model and the normal equations associated with it as explained above, are given by: 
Linear Model  
    �	 = 	�	 + 	��                          (1) 

 
Normal Equations 
 

∑∑
==

=+
n

i
i

n

i
i yxbna

11

        (8)  

∑∑∑
===

=+
n

i
ii

n

i
i

n

i
i yxxbxa

11

2

1

       (9) 

 



Vasilopoulos, A., 2015. Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods. 
Expert Journal of Business and Management, 3(2), pp.205-228 

214 

4.2. The Exponential Model 
The exponential model is defined by the equation:   
 

cxkey =ˆ                      (26) 
 
Our objective is to use the given data to find the best possible values for k and c, just as our objective 

in equation (1) was to use the data to find the best (in the least-square sense) values for a and b. 
Taking natural logarithms (i.e. logarithms to the base e) of both sides of equation (26) we obtain 

)ˆln( cxkey =  
or  

)ln(ˆln cxkey =          (27) 
 
4.2.1. Logarithmic Laws 
To simplify equation (27), we have to use some of the following laws of logarithms: 
i) log (A·B) = log A + log B                              (28) 
ii)  log (A/B) = log A – log B                                (29) 
iii)  log (An) = n log A                                           (30) 
 
Then, using equation (28) we can re-write equation (27) as: 
 

cxeky lnlnln +=         (31) 
 

and, by applying equation (30) to the second term of the right hand side of equation (31), equation 
(31) can be written finally as: 

 
)(lnlnln ecxky +=   

or 
cxky += lnln  (because ln e = loge e = 1)      (32) 

 
Even though equation (26) is non-linear, as can be verified by plotting y against x, equation (32) is 

linear (i.e. the logarithmic transformation changed equation (26) from non-linear to linear) as can be verified 
by plotting: ln y against x. 

But, if equation (32) is linear, it should be similar to equation (1), and must have a set of normal 
equations similar to the normal equations of the linear model (see equations (8) and (9)). 

Question:  How are these normal equations going to be derived? 
Answer:  We will compare the “transformed linear model”, i.e. equation (32), to the actual linear 

model (equation (1)), note the differences between these two models, and then make the appropriate changes 
to the normal equations of the linear model to obtain the normal equations of the “transformed linear model”. 

 
4.2.2. Comparison of the Logarithmic Transformed Exponential Model to the Linear Model 
To make the comparison easier, we list below the 2 models under consideration, namely: 
a)  Original Linear Model: 

 �	 = 	�	 + 	��              (1) 
 

b) Transformed Linear Model: 
 

cxky += lnln         (32) 
 
Comparing equations (1) and (32), we note the following three differences between the two models: 
i. y in equation (1) has been replaced by ln y in equation (32) 
ii. a in equation (1) has been replaced by ln k in equation (32) 
iii.  b in equation (1) has been replaced by c in equation (32) 
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4.2.3. Normal Equations of Exponential Model 
When the three changes listed above are applied to the normal equations of the actual linear model 

(equations (8) and (9)), we will obtain the normal equations of the “transformed model”.  The normal 
equations of the “transformed linear model” are: 
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n
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i yxckn

11

ln)(ln                 (33) 
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n
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n
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n

i
i yxxcxk         (34) 

 
In equations (33) and (34) all the quantities are known numbers, derived from the given data as will 

be shown later, except for: ln k and c, and equations (33) and (34) must be solved simultaneously for ln k and 
c. 

Suppose that for a given data set, the solution to equations (33) and (34) produced the values:   
               ln k = 0.3    and     c = 1.2              (35) 
If we examine the exponential model (equation (26)), we observe that the value of c = 1.2 can be 

substituted directly into equation (26), but we do not yet have the value of k; instead we have the value of ln 
k = 0.3! 

Question:  If we know: ln k = 0.3, how do we find the value of k? 
Answer:  If ln k = 0.3, then: k = e0.3 ≈ (2.718281828)0.3 ≈1.349859              
Therefore, now that we have both the k and c values, the non-linear model, given by equation (26), 

has been completely estimated. 
 
4.3. The Power Model 
Another non-linear model, which can be analyzed in a similar manner, is the Power Model defined 

by the equation: 
 

baxy =ˆ          (36) 
 
which is non-linear if b ≠ 1 and, as before, we must obtain the best possible values for a and b (in the 

least-square sense) using the given data. 
 
4.3.1. Logarithmic Transformation of Power Model 
A logarithmic transformation of equation (36) produces the “transformed linear model” 

 

xbay lnlnln +=           (37) 
 

When equation (37) is compared to equation (1), we note the following 3 changes: 
i. y in equation (1) has been replaced by ln y in equation (37) 
ii. a in equation (1) has been replaced by ln a in equation (37)      (38) 
iii.  x in equation (1) has been replaced by ln x in equation (37) 
 
When the changes listed in (38) are substituted into equations (8) and (9), we obtain the normal 

equations for this “transformed linear model” which are given by equations (39) and (40) below: 
 
4.3.2. Normal Equations of Power Model 
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Equations (39) and (40) must be solved simultaneously for (ln a) and b.  
If ln a = 0.4, then a = e0.4 ≈ (2.718251828)0.4 ≈ 1.491825 and, since we have numerical values for 

both a and b, the non-linear model defined by equation (36) has been completely estimated. 
 
4.4. Derivation of the normal equations for the Quadratic model, y = a + bx + cx2 
To derive the normal equations of the quadratic model, first form the function 
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i
iii cxbxay

1

22=c)b,Q(a,        (41) 

 

Then take the partial derivatives: ,,,
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and set each equal to 0, to obtain the 3 equations 

needed to solve for a, b, c. 
We obtain: 
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Equations (42), (43), and (44) are identical to equation (25). 
 
4.5. Data Utilization in Estimating the 4 Models 
To generate the quantities needed to estimate the 4 models: 
a. The Linear Model 
b. The Exponential Model 
c. The Power Model, 
d. The Quadratic Model, 
the given (x, y) bivariate data must be “manipulated” as shown in Tables: 5, 6, 7, and 8, respectively. 
 
4.5.1. Given Data to Evaluate the Linear Model 
 

Table 5. Manipulation of Given Data to Evaluate the Linear Model 
       x          y       xy       x2 

      x1        y1 x1y1
 

      x1
2 

      x2        y2 x2y2
 

      x2
2 

      x3        y3 x3y3
 

      
x3

2 
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      …        …        …       … 
      xn        yn       xnyn

 

      
2
nx  xn
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      N1        N2        N3       N4 
 

To evaluate y = a + bx, substitute: N1, N2, N3, N4 into equations (8) and (9) and solve for a and b 
simultaneously. 

 
4.5.2. Given Data to Evaluate the Exponential Model 

 
Table 6. Manipulation of Given Data to Evaluate the Exponential Model 

x y x2 ln y x ln y 
x1 y1 2

1x  
ln y1 

11 ln yx ⋅  

x2 y2 2
2x  

ln y2 
22 ln yx ⋅  

x3 y3 2
3x  

ln y3 
33 ln yx ⋅  

… … … … … 
xn yn 2

nx  
ln yn 

nn yx ln⋅  
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To evaluate
cxkey= , substitute N5, N7, N8, N9 into equations (33) and (34) and solve for ln k and c 

simultaneously. 
 
4.5.3. Given Data to Evaluate the Power Model 
 

Table 7. Manipulation of Given Data to Evaluate the Power Model 
x y ln x (ln x)2 (ln x)(ln y) ln y 

x1 y1 ln x1 (ln x1)2 ))(ln(ln 11 yx  
ln y1 

x2 y2 ln x2 (ln x2)2 ))(ln(ln 22 yx  
ln y2 

x3 y3 ln x3 (ln x3)2 ))(ln(ln 33 yx  
ln y3 

… … … … … … 
xn yn ln xn (ln xn)2 ))(ln(ln nn yx  

ln yn 
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N10 N11 N12 N13 N14 N15 
 

To evaluate 
baxy =ˆ

, substitute N12, N13, N14, N15 into equations (39) and (40) and solve 
simultaneously for (ln a) and b. 
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4.5.4. Given Data to Evaluate the Quadratic Model 
 

Table 8. Manipulation of Given Data to Evaluate the Quadratic Model 
x y x2 x3 xy x4 x2 y 

x1 y1 x1
2 x1

3 x1y1 x1
4 x1

2y1 

x2 y2 x2
2 x2

3 x2y2 x2
4 x2

2y2 
x3 y3 x3

2 x3
3 x3y3 x3

4 x3
2y3 

… … … … … … … 
xn yn xn

2 xn
3 xnyn xn

4 xn
2yn 
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 xi
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n

∑ yi xi
4
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n

∑  xi
2

i=1

n

∑ yi 

N16 N17 N18 N19 N20 N21 N22 
 
To evaluate �	 = 	�	 + 	�� + 
��, substitute N16, N17, N18, N19, N20, N21, N22 into equations (42), 

(43), and (44), and solve simultaneously for a, b, and c. 
 

5. Selecting the Best-Fitting Model 
 
5.1. The Four Models Considered 
Given a data set (xi, yi), we have shown how to fit to such a data set four different models, namely: 
a. Linear: 

  ii bxay +=ˆ          (45) 

b. Exponential: 
icx

i key =ˆ          (46) 

c. Power: 
b
ii axy =ˆ          (47) 

d. Quadratic: 
2ˆ iii cxbxay ++=         (48) 

We might decide to fit all four models to the same data set if, after examining the scatter diagram of 
the given data set, we are unable to decide which of the “4 models appears to fit the data BEST.” 

But, after we fit the 4 models, how can we tell which model fits the data best? 
To answer this question, we calculate the “variance of the residual values” for each of the models, 

and then “select as the best model” the one with the smallest variance of the residual values. 
 
5.2. Calculating the Residual Values of Each Model and Their Variance 

Use each xi value, of the given data set (xi, yi), to calculate the iŷ  value, from the appropriate 

model, and then for each i, form the residual:  
 

)ˆ(= nsobservatio of Residual iyyi − ,     (49) 
for each i. 

Then the variance of the residual values is defined by: 
 

2

1

)ˆ(
1

 = (Residual) V  ∑
=

−
n

i
ii yy

DOF
 ,      (50) 

where DOF = Degrees of Freedom. 
 
Note:  The DOF are DOF = n – 2 for the first three models (Linear, Exponential, Power) due to the 

fact that each of these 3 models has 2 unknown quantities that need to be evaluated from the data (a and b, k 
and c, and a and b, respectively) and, as a consequence, 2 degrees of freedom are lost. For the Quadratic 
model, DOF = n – 3 because the model has 3 unknown quantities that need to be estimated and, as a 
consequence, 3 degrees of freedom are lost. 
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Using equation (50) to calculate the variance of the residuals for each of the 4 models, we obtain: 
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After the calculation of the 4 variances from equations: (52), (54), (56), and (58), the model with the 

“smallest” variance is the model which fits the given data set “best”. 
We will now illustrate, through an example, how the 4 models we discussed above can be fitted to a 

given bivariate data set, and then how the “best” model from among them is selected. 
 
5.3. A Considered Example 
A sample of 5 adult men for whom heights and weights are measured gives the following results 

(Table 9). 
Table 9. Sample of 5 adult men 
# X = Height Y = Weight 
1 64 130 
2 65 145 
3 66 150 
4 67 165 
5 68 170 

 
Problem:  Fit the linear, exponential, power, and quadratic models to this bivariate data set and then 

select as the “best” the model with the smallest variance of the residual values. 
 
5.3.1. Fitting the Linear Model bx + a =ŷ  
To fit the linear model, we must extend the given bivariate data so that we can also calculate     

∑
=

n

i
ix

1

2
 and i

n

i
i yx∑

=1

, as shown below, in Table 10: 

Table 10. Calculations for bivariate data of 5 adults for the linear model 
x2 x y Xy 

4096 64 130 8320 
4225 65 145 9425 
4356 66 150 9900 
4489 67 165 11055 
4624 68 170 11560 



Vasilopoulos, A., 2015. Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods. 
Expert Journal of Business and Management, 3(2), pp.205-228 

220 

∑
=

5

1

2

i
ix =21,790 ∑

=

5

1i
ix = 330 ∑

=

5

1i
iy = 760 i

i
i yx∑

=

5

1

= 50,260 

 
We then substitute the generated data into the normal equations for the linear model, namely 

equations (8) and (9): 
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and obtain the equations: 

 

6 5� + 330� = 760330� + 21,790� = 50,260 

 
When these equations are solved simultaneously for a and b we obtain: 

 

G� = −508, �2H� = 10  

 
Therefore, the linear model is: 
 

  ŷ = a + bx = −508 + 10x 
 
The variance of the residual values for the linear model is calculated as shown below, in Table 11: 
 

Table 11. Variance of the residual values for the linear model 
Given X Given Y Calculated Y Residual (Residual)2 

x y ŷ= -508 + 10x y - ŷ  (y - ŷ )2 

64 130 -508 + 10 (64) = 132 -2 (-2)2 = 4 
65 145 -508 + 10 (65) = 142 +3 (+3)2 = 9 
66 150 -508 + 10 (66) = 152 -2 (-2)2 = 4 
67 165 -508 + 10 (67) = 162 +3 (+3)2 = 9 
68 170 -508 + 10 (68) = 172 -2 (-2)2 = 4 
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Therefore, the variance of the residual values, for the linear model is: 
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5.3.2. Fitting the Exponential Model ŷ = kecx 
To fit the exponential model we need to extend the given bivariate data so that we can calculate, in 

addition to  330 =
5

1
∑

=i
ix  and 21,790 =

5

1

2∑
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ix , ∑
=
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i
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∑ )
 
as shown below, in Table 12: 

 
Table 12. Calculations for bivariate data of 5 adults for the exponential model 

x2 x y ln y x ⋅ ln y  

4096 64 130 4.8675 311.5200 
4225 65 145 4.9767 323.4855 
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4356 66 150 5.011 330.726 
4489 67 165 5.1059 342.0953 
4624 68 170 5.1358 349.2344 
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∑ =1657.04468 

 
We then substitute the generated data into the normal equations for the exponential model (i.e. 

equations (33) and (34)): 
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and obtain the equations:   

 

6 5 ln � + 330
 = 25.096730 ln � + 21,790
 = 1657.0447 

 
When these equations are solved simultaneously for ln k and c, we obtain: c = 0.06658 and lnk = 

0.6251, or: k = e0.6251 = 1.868432 
Therefore, the exponential model is: 

xcxkey 06658.0e 1.868432 =ˆ =  

or 
ln y = ln k + cx = 0.6251 + 0.06658x 

 
Then, the variance of the residual values, for the exponential model, is calculated as shown below, in 

Table 13: 
Table 13. Variance of the residual values for the exponential model 

x y ŷ= kecx = 1.868432 e0.06658x y - ŷ  (y - ŷ )2 

64 130 1.868432 e0.06658(64) = 132.4515 -2.4515 6.0099 
65 145 1.868432 e0.06658(65) = 141.5703 3.4297 11.7628 
66 150 1.868432 e0.06658(66) = 151.3169 -1.3169 1.7324 
67 165 1.868432 e0.06658(67) = 161.7346 3.2654 10.6630 
68 170 1.868432 e0.06658(68) = 172.8694 -2.8694 8.2336 
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Therefore, the variance of the residual values, for the exponential model is: 
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5.3.3. Fitting the Power Model, ŷ = axb

  
To fit the power model we need to extend the given bivariate data set to generate the quantities:
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ii yx , and this is accomplished as shown below, in Table 

14: 
 

Table 14. Calculations for bivariate data of 5 adults for the power model 
x y ln x (ln x)2 ln y (ln x)(ln y) 
64 130 4.158883 17.2963085 4.867553 20.2435 
65 145 4.1738727 17.42550908 4.976734 20.7723 
66 150 4.189654742 17.55320686 5.010635 20.9928 
67 165 4.204692619 17.67944002 5.105945 21.4689 
68 170 4.219507705 17.80424527 5.135798 21.6705 
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We then substitute the generated data into the normal equations of the power model, namely 

equations (39) and (40):  
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and obtain the equations:  
 

G 5 ln � + 20.9471� = 25.096720.9471 ln � + 87.7581� = 105.1505 

 
When these equations are solved simultaneously for b and ln a we obtain:  
  

G� = 4.3766, �2Hln � = −13.316  

 
Therefore, the “linearized” power model becomes: 
 ln ŷ = ln � + � ln � = −13.316 + 4.3766� 
 
Then the variance of the residual values for the power model is obtained as shown below: 
 

Table 15. Variance of the residual values for the power model 

x y ln x 
ln ŷ= ln a + b ln x 

= -13.316 + 4.3766x 
ŷ  y - ŷ  (y - ŷ )2 

64 130 4.158883 ln ŷ 1 = 4.885768 132.3920 -2.3920 5.721664 

65 145 4.173873 ln ŷ 2 = 4.95623 141.6874 3.3126 10.973319 

66 150 4.189655 ln ŷ 3 = 5.020443 151.4784 -1.47843 2.185667 

67 165 4.204693 ln ŷ 4 = 5.086258 161.7833 3.2167 10.347159 

68 170 4.219508 ln ŷ 5 = 5.151097 172.6208 -2.6208 6.868592 

 
i=1
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∑ (yi - iŷ )2 

= 36.09640 
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Therefore, the variance of the residuals values for the power model is:  
 

12.0321 =
3

0964.36
)(

2

1
= )V(Residual 2

1

Power =−
− ∑

=

n

i

b
ii axy

n
   

 
5.3.4. Fitting the Quadratic Model, ŷ = a + bx +cx2 
To fit the quadratic model, we need to use the given bivariate data set and extend it to generate the 

quantities: 
 

Xi = 330; Xi
2

i=1

n

∑ = 21,790
i=1

n

∑ ; Xi
3

i=1

n

∑ =1,439,460; Xi
4 = 95,135,074;

i=1

n

∑

Yi

i=1

n

∑ = 760; XiYi = 50,260;
i=1

n

∑ Xi
2Yi = 3,325,270

i=1

n

∑
 

 
We then substitute the generated data into the normal equations of the quadratic model (see equation 

(25)), and obtain: 
 

K 5a	 + 	330b	 + 	21,790c	 = 	760330a	 + 	21,790b	 + 	1,439,460c	 = 	50,26021,790a	 + 	1,439,460b	 + 	95,135,074c	 = 	3,325,270 

 
Solving these 3 equations simultaneously, we obtain a = -25,236/7, b = 730/7, c = -5/7. Therefore, 

the quadratic function ŷ = f(x) is given by: 
 

ŷ	 = 	a	 + 	bx	 + cx2 = 17 [−23,326 + 730� − 5��] 
 
The variance of the residual values for the quadratic model is calculated as shown below, in Table 

16: 
 

Table 16. Variance of the residual values for the quadratic model 

x y ŷ=
1

7
−25,326+ 730x − 5x2[ ] yi - ŷ i (yi - ŷ i)2 

64 130 ŷ 1 = 130.5714286 -0.5714286 0.326530644 

65 145 ŷ 2 = 142.7142857 2.2857143 5.224489861 

66 150 ŷ 3 = 153.4285714 -3.4285714 11.75510184 

67 165 ŷ 4 = 162.7142857 2.2857143 5.224489861 

68 170 ŷ 5 = 170.5714286 -0.5714286 0.326530644 

 
i=1

5

∑ (yi - ŷ i)2 

= 22.85714286 
 
Therefore, the variance of the residual values for the quadratic model is: 
 

4286.1142857143.11
2

85714286.22
)ˆ - (y

3

1
)V(Residual

5

1

2
 Quadratic ii ≈==

−
= ∑

=i

y
n

  

 
5.3.5. Summary of Results and Selection of the “Best” Model 
We have fitted the 4 models: linear, exponential, power, and quadratic models, calculated the 

respective residual variances, and have obtained the following results: 
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a) The linear model is: 
    
   10x 508- bx  + aˆ +==y  
   with V(Residual)Linear = 10 
 
 
b) The exponential model is: 
    

   
xcxkey 06658.0e 1.868432 =ˆ =  

   with V(Residual)Exponential = 12.8017 
 
c) The power model is: 
 
   ln x 4.3766 + 13.316- =ln x  b + aln  ˆln =y  
   with V(Residual)Power = 12.0321 
 
d) The quadratic model is 
 

   [ ]22 5730326,25
7

1
 = cx +bx  + aˆ xxy −+−=  

   with V(Residual) Quadratic = 11.4286 
 
Since the linear model has the smallest variance of the residual values of the 4 models fitted to the 

same bivariate data set, the linear model is the “best” model (but the other 3 values are very close). The 
linear model, therefore, will be selected as the “best” model and used for forecasting purposes. 

 
6.   MINITAB Solutions 
 
To obtain the MINITAB solutions of the four models we discussed in this paper we do the 

following: 
 
6.1. Finding the MINITAB Solution for the Linear Mo del 
 
The data set used to find the MINITAB solution for the linear model is presented in Table 17. 
 

Table 17. Data set in MINITAB for the linear model 
MTB > Set C1 
DATA> 64   65  66  67  68 
DATA> end 
MTB > set C2 
DATA> 130  145 150 165 170 
DATA> end 
MTB > Name C1 'X' C2 'Y' 
MTB > REGRESS 'Y' 1 'X' 

The results of the regression analysis for the linear model is presented in Table 18. 
 

Table 18. Regression analysis: Y versus X for the linear model 
Regression equation:  Y = - 508 + 10.0 X 
  
Predictor Coef SE Coef T p 
Constant       -508.000 66.020 -7.700 0.005 
X 10.000 1.000 10.000 0.002 

Regression fit: S R-Sq R-Sq (adj)  
 3.162 97.1% 96.1%  
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Analysis of Variance: 
Source             DF SS MS F p 
Regression 1 1000.0 1000.0 100.0 0.002 
Residual Error 3 30.0 10.0 
Total 4 1030.0 

 
6.2. Finding the MINITAB Solution for the Exponential Model 
 
The data set used to find the MINITAB solution for the exponential model is presented in Table 19. 
 

Table 19. Data set in MINITAB for the exponential model 
MTB > Set C1 
DATA> 64   65  66  67  68 
DATA> end 
MTB > set C2 
DATA> 130  145 150 165 170 
DATA> end 
MTB > Name C1 'X' C2 'Y' 
MTB > REGRESS 'Y' 1 'X' 

 
The results of the regression analysis for the exponential model is presented in Table 20. 
 

Table 20. Regression analysis: Y versus X for the exponential model 
Regression equation:  Y = 0.625 + 0.0666 X 
  
Predictor Coef SE Coef T p 
Constant       0.6251 0.4925 1.27 0.294 
X 0.066580 0.007460 8.92 0.003 

Regression fit: S R-Sq R-Sq (adj)  
 

 0.0235917 96.4% 95.2%  
 

 
Analysis of Variance: 
Source             DF SS MS F p 
Regression 1 0.044329 0.044329 79.65 0.003 
Residual Error 3 0.001670 0.000557 

  
Total 4 0.045999 

   
 
 
6.3. Finding the MINITAB Solution for the Power Model 
 
The data set used to find the MINITAB solution for the power model is presented in Table 21. 
 

Table 21. Data set in MINITAB for the power model 
MTB > Set C1 
DATA> 4.158883; 4.1738727; 4.189654742; 4.204692619; 4.2195077 
DATA> end 
MTB > set C2 
DATA> 4.867553; 4.976734; 5.010635; 5.105945; 5.135798 
DATA> end 
MTB > Name C1 'X' C2 'Y' 
MTB > REGRESS 'Y' 1 'X' 

 
The results of the regression analysis for the power model is presented in Table 22. 
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Table 22. Regression analysis: Y versus X for the power model 
Regression equation:  Y = - 13.3 + 4.38X 
  
Predictor Coef SE Coef T p  
Constant       -13.316 2.069 -6.44 0.008 

 
X 4.3766 0.4939 8.86 0.003 

 
 

Regression fit: S R-Sq R-Sq (adj)  
 

 0.0237507 96.3% 95.1%  
 

 
Analysis of Variance: 
Source             DF SS MS F p 
Regression 1 0.044301 0.044301 78.53 0.003 
Residual Error 3 0.001692 0.000564 

  
Total 4 0.045993 

   
 
6.4. Finding the MINITAB Solution for the Wuadratic  Model 
 
The data set used to find the MINITAB solution for the quadratic model is presented in Table 23. 
 

Table 23. Data set in MINITAB for the quadratic model 
MTB > Set C1 
DATA> 64 65 66 67 68 
DATA> end 
MTB > set C2 
DATA> 4096 4225 4356 4489 4624 
DATA> end 
MTB > SET C3 
DATA> 130 145 150 165 170 
DATA> END 
MTB > NAME C1 'X1' C2 'X2' C3 'Y' 
MTB > REGRESS 'Y' 2 'X1' 'X2' 

 
The results of the regression analysis for the quadratic model is presented in Table 24. 
 

Table 24. Regression analysis: Y versus X1, X2 for the quadratic model 
Regression equation:  Y = - 3618 + 104 X1 - 0.714 X2 
  
Predictor Coef SE Coef T p  
Constant       -3618 3935 -0.92 0.455 

 
X1 104.3 119.3 0.87 0.474 

 
X2 -0.7143 0.9035 -0.79 0.512  

 
Regression fit: S R-Sq R-Sq (adj)  

 
 3.38062 97.8% 95.6%  

 
 

Analysis of Variance: 
Source             DF SS MS F p 
Regression 2 1007.14 503.57 44.06 0.022 
Residual Error 2 22.86 11.43 

  
Total 4 1030.00    
      
Source   DF Seg SS    
X1 1 1000.00    
X2 1 7.14    
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7. Conclusions 
 
Reviewing our previous discussion we come to the following conclusions:  

  The Linear Regression problem is relatively easy to solve and can be handled using algebraic 
methods. 
  The problem can also be solved easily using available statistical software, like MINITAB. 
  Even though the solution to Regression problems can be obtained easily using MINITAB (or other 
statistical software) it is important to know what the hand methodology is and how it solves these problems 
before you can properly interpret and understand MINITAB’s output. 
  In general, non-linear regression is much more difficult to perform than linear regression. 
  There are, however, some simple non-linear models that can be evaluated relatively easily by 
utilizing the results of linear regression. 
  The non-linear models analyzed in this paper are: Exponential Model, Power Model, Quadratic 
Model. 
  A procedure is also discussed which allows us to fit to the same bivariate data set many models 
(such as: linear, exponential, power, quadratic) and select as the “best fitting” model the model with the 
“smallest variance of the residuals”. 
  In a numerical example, in which all 4 of these models were fitted to the same bivariate data set, we 
found that the Linear model was the “best fit”, with the Quadratic model “second best”. The Power and 
Exponential models are “third best” and “fourth best” respectively, but are very close to each other. 
  The evaluation of these models is facilitated considerably by using the statistical software package 
MINITAB which, in addition to estimating the unknown parameters of the corresponding models, also 
generates additional information (such as the p-value, standard deviations of the parameter estimators, and 
R2). 
  This additional information allows us to perform hypothesis testing and construct confidence 
intervals on the parameters, and also to get a measure of the “goodness” of the equation, by using the value 
of R2. A value of R2 close to 1 is an indication of a good fit. 
  The MINITAB solution for the linear model shows that both a and b (of ŷ = a + bx = -508 + 10x) are 
significant because the corresponding p-values are smaller than α  = 0.05, while the value of R2 = 97.1%, 
indicating that the regression equation explains 97.1% of the variation in the y-values and only 2.9% is due 
to other factors. 
  The MINITAB solution for the quadratic model shows that a, b, and c (of ŷ = a + bx + cx2 =   -3,618 
+ 104.3x + 0.7143x2) are individually not significant (because of the corresponding high p-values, but b and 
c jointly are significant because of the corresponding p-value of p = 0.022 < α  = 0.05. The value of R2 is: R2 
= 97.8%. 
  The MINITAB solution for the power model shows that both a and b (of ŷ = axb or ln y = ln a + b ln 
x = -13.3 + 4.3766 ln x) are significant because the corresponding p-values are smaller than α  = 0.05, while 
the value of R2 = 96.3%. 
  The MINITAB solution for the exponential model shows that the k (in ŷ = kecx =1.868432e0.06658x or 
ln ŷ = ln k + cx = 0.6251 + 0.06658x) is not significant because of the corresponding high p-value, while the 
c is significant because of the corresponding p-value being smaller than α  = 0.05. The value of R2 = 96.4%. 

 
References 

 
Adamowski, J., H., Fung Chan, S.O., Prasher, B., Ozga-Zielinski, and Sliusarieva. A., 2012. Comparison of 

multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural 
network, and wavelet artificial neural network methods for urban water demand forecasting. Water 
Resources, 48, W01528, Montreal: Canada 

Berenson, M.L., Levine, D.M. and Krehbiel, T.C., 2004. Basic Business Statistics (9th Edition). Upper 
Saddle River, N.J.: Prentice-Hall 

Bhatia, N., 2009. Linear Regression: An Approach for Forecasting 
Black, K., 2004. Business statistics (4th Edition). Hoboken, NJ: Wiley 
Canavos, G.C., 1984. Applied Probability and Statistical Methods. Boston: Little Brown 
Carlson, W.L. and Thorne, B., 1997. Applied Statistical Methods. Upper Saddle River, N.J.: Prentice-Hall 
Chen, Kuan-Yu, 2011. Combining linear and nonlinear model in forecasting tourism demand. Expert 

Systems with Applications, 38(8), pp.10368–10376 



Vasilopoulos, A., 2015. Linear and Non-Linear Regression: Powerful and Very Important Forecasting Methods. 
Expert Journal of Business and Management, 3(2), pp.205-228 

228 

Childress, R.L., Gorsky, R.D. and Witt, R.M., 1989. Mathematics for Managerial Decisions. Upper Saddle 
River, N.J.: Prentice-Hall 

Chou, Ya-lun, 1992. Statistical Analysis for Business and Economics. New York: Elsevier 
Freud, J.E. and Williams, F.J., 1982. Elementary Business Statistics: The Modern Approach. Upper Saddle 

River, N.J.: Prentice-Hall 
McClave, J.T., Benson, G.P. and Sincich, T., 2001. Statistics for Business and Economics (8th Edition). 

Upper Saddle River, N.J.: Prentice-Hall 
Pindyck, R. and Rubinfeld, D.L., 1981. Econometric Models and Economic Forecasts (2nd Edition). New 

York: McGraw-Hill 
Vasilopoulos, A. and Lu, F.V., 2006. Quantitative Methods for Business with Computer Applications. 

Boston, MA: Pearson Custom Publishing 
Vasilopoulos, A., 2005. Regression Analysis Revisited. Review of Business, 26 (3), pp.36-46 
Vasilopoulos, A., 2007. Business Statistics – A Logical Approach. Theory, Models, Procedures, and 

Applications Including Computer (MINITAB) Solutions. Boston, MA: Pearson Custom Publishing 
 
 
 

 


