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According to the CAPM, risk is measured by the beta, and the relation between 

required expected return and beta is linear. This paper examines the conditional 

relationship between beta and return in the US stock market. The conditional 

covariances and variances used to estimate beta are modeled as an ARCH process. 

The beta return relationship is tested upon the sign of the excess market return. The 

implication of the sign of the excess market return follows Morelli (2011). This study 

shows the importance of recognizing the sign of the excess market return when testing 

the beta-return relationship. The approach also allows us to distinguish the size effect 

and the effect of economic cycles.  
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1. Introduction 

 

The CAPM is widely viewed as one of major contributions of academic research to financial managers. 

But the robustness of the size effect and the absence of a relation between beta and average return are so 

contrary to the CAPM that the consensus is that the static CAPM is unable to explain the cross-section of 

average returns on stocks (see Fama and French, 1992). 

This paper examines the role of beta in explaining security returns in the US stock market over the 

period of October 2000 to June 2014. In this paper, the author adopts the dynamic conditional beta approach 

proposed by Morelli (2011). We use univariate GARCH models to estimate the dynamic of the volatility of 

error terms, and a dynamic of the dependence structure between the innovations. The beta is estimated as the 

ratio of the conditional covariance between the residuals from an autoregressive model for each index return 

and market return, and the conditional variance of the residuals from an autoregressive model for the market 

return. Modeling both components of beta (the covariance and variance) as an ARCH/GARCH process allows 

conditional information to be incorporated into the model (see Morelli 2011). 

The empirical investigation is based on the Russell 3000 index which consists of 3,000 stocks. It 

subdivides into large and small cap indexes. The large cap index is the Russell 1000, which consists of the top 

1,000 companies, give or take a few. The small cap index is the Russell 2000, which includes all the rest of 

the Russell 3000. The large-cap Russell 1000 had a market-cap range of $1.35 billion to $540 billion, with a 
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median of $5.2 billion. The small-cap Russell 2000 had a range of $101 million to $2.61 billion, with a median 

of $460 million. The testing period is also split into two subperiods running form October 2, 2000 to January 

25 2007 and January 25, 2007 to June 24, 2014. This allows us to calibrate the model with data during two 

economic cycles.  

The rest of the paper is organized as follows. Section 2 details the reviews of literature. Section 3 

presents the methodology and the data. Section 4 discusses our estimates of conditional beta. Section 5 

concludes the paper.  

 

2. Literature Review 

 

The Sharpe-Lintner-Black Capital Asset Pricing Model (CAPM) is a capital asset pricing model that 

financial managers use most often for assessing the risk. According to the CAPM, the risk is measured by the 

beta, and the relation between required expected return and beta is linear. Many subsequent studies failed to 

find a risk-return relationship.  

Banz (1981) was one of the first researchers to study the influence of market capitalisation on security 

returns. He demonstrated that small cap securities generated greater returns than those of large capitalisation 

and attributed this overperformance of small caps to the remuneration of an additional risk factor.  

The size effect also poses a problem with regards to the validity of the Capital Asset Pricing Model 

(CAPM), validity according to which which the expected yield of securities depends on the systematic risk 

level (the beta). According to behavioural finance researchers, size effect is proof of the irrationality of 

individuals. On the other hand, researchers who support the concept of rationality suggest that size effect can 

be attributed to risk factors other than the market.To reconcile the size effect with the CAPM, Fama and French 

(1992, 1993) proposed incorporating additional risk factors into it, as the beta was no longer the sole source of 

risk. Fama and French suggested that the higher than expected returns of value stocks and small caps offset 

the additional risk inherent in these securities for shareholders. In fact, value stocks and small caps are 

susceptible to being financially weakened in the event of an economic crisis.  

The CAPM model is based upon expectation, and it is tested using realized returns with the assumption 

that realized returns accurately reflect, and thus can proxy for. The positive relationship between beta and the 

expected returns implies that the expected return on the market must always exceed the risk-free rate and the 

expected market risk premium is positive (see Morelli 2011). Using realized data, the realized market risk 

premium may be negative (see Pettengill et al. 1995). They claimed that there is a probability that the return 

on the market will at times be less than the risk-fee rate. If this was not the case, no rational investor would 

ever invest in risk-free assets. Pettengill et al. (1995) infer that when the realized return on the market exceeds 

the risk-free rate (up markets) there exists a positive relationship between beta and returns, and when the 

realized market return is negative (down markets) the beta return relationship should be negative. Morelli 

(2011) confirmed this assumption by examining the role of beta in explaining security returns in the UK stock 

market.  

The CAPM was derived by examining the behavior of investor in a hypothetical model-economy in 

which they live for one period. In the real world investors live for many periods. One of the assumptions is 

that the betas of the assets remain constant over time. Jagannathan and Wang (1996) suggested that the 

assumption is not reasonable since the relative risk of a firm’s cash flow vary over the business cycle. During 

a recession, for example, financial leverage of firms in relatively poor shape may increase sharply relative to 

other firms, causing their stock betas to rise. Hence, betas and expected returns depend on the nature of the 

information available at any given point in time and vary over time. 

 

3. Data and Methodology 
 

3.1. Data 
The sample consists of the Russell 1000, Russell 2000 and Russell 3000 index over the period October 

2, 2000 to June 24, 2014, a total of 3,582 observations. The one-month T-bill rate is used to proxy for the free-

risk rate which is converted into daily equivalent so as to have a similar frequency with the index returns. The 

Russell 3000 index is used to proxy for the market portfolio. The data required is the returns on the Russell 

index returns series. These returns are calculated using data on the daily price. The requisite data is obtained 

from the Factset database. The last trading price of the day is used as the daily price. To provide more robust 

tests, the testing period is also split into two subperiods running form October 2, 2000 to January 25, 2007 and 

January 25, 2007 to June 24, 2014.  



Xiao, B., 2016. Conditional Relationship Between Beta and Return in the US Stock Market.  

Expert Journal of Business and Management, 4(1), pp. 46-55 

48 

 

 

 
Figure 1. Russell 1000 and Russell 2000 index (Daily, 2000 – 2014) 

 

The summary statistics for the Russell 1000, Russell 2000 and Russell 3000 index (Table A1 in the 

Appendix) reveals a positive skewness,  and a positive kurtosis. Russell index are non-normal at the confidence 

interval of 99%. So, it is mandated to convert the Russell index series into the return series.   

By observing the plotted autocorrelation and partial autocorrelation of the Russell 3000 index we find 

that the series is nonstationary (Figures A1 and A2 in the Appendix). This is confirmed when we apply both 

the Dickey-Fuller test and the Phillips-Perron test (Table A2, A3 in the Appendix), so in this case we cannot 

use the ARCH model for modelling volatility. 

In general, the movements of the stock indices series are non-stationary and not appropriate for the 

study purpose. So, it is mandated to convert the daily price into the return series. The series of Russell index 

are transformed into returns by using the following equation: 

𝑅𝑡 = (
𝑃𝑡

𝑃𝑡−1
) − 1           (1) 

Where, 

Rt = the rate of return at time t  

Pt = the price at time t    

Pt-1 = the price just prior to the time t 

 

The summary of statistics on returns are found in Table 1. This table also shows that that Russell 3000 

index has an average daily return of 0.0001833 percent and a standard deviation of 0.01264. In accordance 

with most financial time series, the skewness coefficient, -0.03531, has a negative sign. Therefore, these 

characteristics of data can be accounted for by using the ARCH family of models. And so, when modeling 

such a series the series must be stationary. Because of this, the Dickey-Fuller test is applied to the returns series 

(Table A4 in the Appendix). In the results of this test we can observe that the series is indeed stationary. The 

Phillips-Perron test confirms that the series is stationary (Table A5 in the Appendix). 

 
Table 1. Summary statistics for returns 

 Obs Mean Std. Dev. Min Max Skewness Kurtosis 

Russell1000 3581 0.000178 0.0002139 0.0911 0.1167 0.004622 8.6750 

Russell2000 3581 0.000356 0.0006237 -0.1185 0.09265 0.123882 4.6165 

Russell3000 3581 0.000190 0.0002162 0.0928 0.1147 0.029767 8.1954 

 

ADF test as well as PP test are used to get confirmation regarding whether the return series is stationary 

or not. The values of ADF test statistic, -68.545, is less than its test critical value, -3.410, at 5%, level of 

significance  which implies that the crude oil price return series is  stationary. The findings of the PP test also 

confirms that return series is stationary, since the values of PP test statistic is less than its test critical value.  
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The plotted autocorrelation and partial autocorrelation of squared returns indicate dependence, and 

therefore suggest time-varying volatility (Figures A3 and A4 in the Appendix). From this data we can deduce 

that the series are time-dependent. 

 

3.2. Specification of the Models Used in This Study 

3.2.1. ARCH(q) Model and GARCH(p, q) Model 

Autoregressive conditional heteroskedasticity (ARCH) models are used when the error terms will have 

a characteristic size or variance (Engle 1982). The ARCH models assume the variance of the current error term 

to be a function of the actual sizes of the previous time period’s error terms. The ARCH model is a non-linear 

model which does not assume the variance is constant. The error terms are split into a stochastic piece and a 

time dependent standard deviation: 

𝜖𝑡 = 𝜎𝑡𝑧𝑡           (2) 

The random variable is a white noise process, the series σ2
t is modelled by: 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜖𝑡−1

2 +⋯+ 𝑎𝑞𝜀𝑡−𝑞
2 = 𝑎0 + ∑ 𝑎𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2       (3) 

Where a0 > 0 and ai > 0. 

The GARCH model is a generalized ARCH model, developed by Bollerslev (1986) and Taylor (1986) 

independently. The GARCH model is a solution to avoid problems with negative variance parameter estimates. 

A fixed lag structure is imposed. The GARCH (p, q) model (where p is the order of the GARCH terms σ2 and 

q is the order of the ARCH terms ε2. 

𝜎𝑡
2 = 𝑤 + 𝑎1𝜖𝑡−1

2 +⋯+ 𝑎𝑞𝜀𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 +⋯+ 𝛽𝑝 = 𝑤 +∑ 𝑎𝑖
𝑞
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛽𝑖
𝑝
𝑖=1 𝜎𝑡−𝑖

2     (4) 

The form of GARCH (1,1) is given below: 

𝜎𝑡
2 = 𝑎0 + 𝑎1𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2             (5) 

 

3.2.2. The Conditional Relationship between Risk and Return 

The conditional version of the CAPM can be shown as follows: 

𝐸(𝑟𝑖𝑡|∅𝑡−1) = 𝛽𝑖|∅𝑡−1(𝐸(𝑟𝑀𝑡|∅𝑡−1))           (6) 

Where 𝑟𝑖𝑡 is the excess return for security i and rMt  is the excess return on the market portfolio,  

E (. | ∅t-1) is expectation conditional on the information set ∅ available at time t-1. βi is the beta coefficient of 

security i, the measure of systematic risk given by the following expression (see Morelli 2011):  

𝛽𝑖|∅𝑡−1 = 𝑐𝑜𝑣(𝑟𝑖𝑡 , 𝑟𝑀𝑡|∅𝑡−1) 𝑣𝑎𝑟(𝑟𝑀𝑡|∅𝑡−1)⁄           (7) 

Tests of the conditional relationship between beta and returns depend upon the information set ∅ 
available. Different tests can be conducted dependent upon how the information set ∅ is defined. In this article, 

the ∅ represents econometric information. 

The return on equity i and the market can be modeled as an autoregressive process as given by : 

𝑟𝑖𝑡 = 𝑎0 + ∑ 𝑎𝑗𝑟𝑖𝑡−𝑗 + 𝜀𝑖𝑡
𝑛
𝑗=1             (8) 

𝑟𝑀𝑡 = 𝑎0 + ∑ 𝑎𝑗𝑟𝑀𝑡−𝑗 + 𝜀𝑀𝑡
𝑛
𝑗=1            (9) 

These two equations can be decomposed into the expected and unexpected components as follows: 

𝑟𝑖𝑡 = 𝐸(𝑟𝑖𝑡|∅𝑡−1) + 𝜀𝑖𝑡           (10) 

𝑟𝑀𝑡 = 𝐸(𝑟𝑀𝑡|∅𝑡−1) + 𝜀𝑀𝑡          (11) 

The disturbance terms εit, εMt can be decomposed, and the expectation part of the equation represents 

the conditional covariance between rit, rMt and the conditional variance of rMt respectively. So, the risk 

measurement beta can be expressed as follows: 

𝛽𝑖|∅𝑡−1 = 𝐸(𝑟𝑖𝑡 , 𝑟𝑀𝑡|∅𝑡−1) 𝐸(𝑟𝑀𝑡|∅𝑡−1)⁄ = 𝑐𝑜𝑣(𝑟𝑖𝑡 , 𝑟𝑀𝑡|∅𝑡−1) 𝑣𝑎𝑟(𝑟𝑀𝑡|∅𝑡−1)⁄    (12) 

The expected return on an equity is dependent upon time varying risk, where the conditional 

information is incorporated by modeling the components of risk as ARCH and GARCH processes. 

𝐸(𝑟𝑖𝑡|∅𝑡−1) = (𝛽𝑖|∅𝑡−1)[𝐸(𝑟𝑀𝑡|∅𝑡−1)]        (13) 

In order to proceed with the estimation of beta by equation (12), it is necessary for the expectations 

appearing in both the numerator and the denominator (see Morelli 2011). Each of the expectations E (εit εMt) 

and E (ε2
Mt) (var (rMt|∅t-1)) will be a function of the econometric information available at time t-1. rit, rMt  can 

be represented by an autoregressive process. And for both components of conditional beta, E (εit εMt) and E 

(ε2
Mt), they could follow an ARCH or GARCH process, a model where the conditional variances and 

covariances are allowed to change over time. All the heteroskedastic models are adopted in the estimation 

process with the best fit model being the one selected. 

Once the beta is estimated, the relationship between beta and returns, conditional on the econometric 

information, can be tested from a cross-sectional regression: 



Xiao, B., 2016. Conditional Relationship Between Beta and Return in the US Stock Market.  

Expert Journal of Business and Management, 4(1), pp. 46-55 

50 

 

𝑟𝑖 = 𝑎0 + 𝛾1𝛽𝑖 + 𝜀𝑖          (14) 

Where a0 should equal zero and γ1 is the market risk premium. A positive γ1 implies that the beta is a 

significant risk measure. We suppose the relationship between beta, returns conditional and the excess market 

return. We use a model with a dummy variable in the cross-sectional. The dummy variable separated the 

positive and negative excess market returns. The equation is shown as follows (see Pettengill et al. 1995): 

𝑟𝑖 = 𝑎0 + 𝜃𝛾1
+𝛽𝑖 + (1 − 𝜃)𝛾1

−𝛽𝑖 + 𝜀𝑖        (15) 

Where θ = 1 if rMt > 0 and 0 if rMt < 0. The positive and negative symbol of γ mean a positive and 

negative excess market return. The dummy variable allows us to examine the negative market risk premium. 

The a0 should equal 0 and the γ should be significant. Morelli (2011) pointed that the methodology of Pettengill 

et al. (1995) is not a test of CAPM, but a test of the significance of beta, and they focused on the relationship 

between beta and realized returns and not expected returns.  

 

4. Empirical Findings (Analysis and Results) 

 

We find a significant autocorrelation at differing lags are detected for the Russell 1000 and Russell 

3000 index, reducing in significance as the lag period increases (Appendix A1, A2). An autoregressive process 

is required to produce an uncorrelated sequence from the return series. The author found an ARMA(1,1) 

process for the two index. The residual series is strict white noise and shows no significant autocorrelation 

(Appendix A11, 12, 15, 16). Beta estimation requires the conditional variance and the covariance, both of 

which are modeled as an ARCH process.  

Having estimated both the conditional variance and the conditional covariance, beta is then estimated 

in accordance with equation (12). Table (2) reports the results from the cross-sectional regression as given by 

equation (14), showing the average risk premium of Russell 1000 over the total time period, γ= -0.04017, and 

also for the two sub-periods, γ=0.01919 and γ=-0.2049. 

 
Table 2. The relationship between beta and returns 

 October 2000 to 

June 2014 

October 2000 to 

January 2007 

January 2007 to 

June 2014 

α (Russell 1000) 0.04024 

(0.373) 

-0.01915 

(0.851) 

0.2039 

(0.166) 

γ (Russell 1000) -0.04017 

(0.375) 

0.01919 

(0.851) 

-0.2049 

(0.167) 

α (Russell 2000) -0.00237 

(0.621) 

0.00011 

(0.991) 

-0.01865 

(0.216) 

γ (Russell 2000) 0.002671 

(0.568) 

0.00025 

(0.981) 

0.01783 

(0.207) 

Note: The table reports the time-series coefficients (risk premiums) over the testing periods. The p-values is 

shown in parentheses. 

 

The positive risk premium implies an upward sloping risk-return relationship (see Morelli 2011). The 

risk premium in our study is not statistically significant, so the hypothesis which γ≠0 is rejected, and beta does 

not play a significant role in explaining security returns. Such findings are consistent with studies on the US 

markets by Davis (1994) and Fama and French (1992) and the study on the UK market by Morelli (2011). 

Morelli (2011) noted that the insignificant beta can be explained by the aggregation of data during periods 

when excess market return is both positive and negative. 

 

 
Table 3. The relationship between beta and returns for Russell index 

 October 2000 to 

June 2014 

October 2000 to 

January 2007 

January 2007 to 

June 2014 

Russell 1000 

All markets γ -0.04017 

(0.375) 

0.01919 

(0.851) 

-0.2049 

(0.167) 

Up markets γ+ 0.0082767 

(0.000) 

0.0075585 

(0.000) 

0.0088719 

(0.000) 

Down markets γ- -0.0085587 

(0.000) 

-0.0076223 

(0.000) 

-0.0094207 

(0.000) 
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Russell 2000 

All markets γ 0.002671 

(0.568) 

0.00025 

(0.981) 

0.01783 

(0.207) 

Up markets γ+ 0.0100167 

(0.000) 

0.0092839 

(0.000) 

0.0105116 

(0.000) 

Down markets γ- -0.010144 

(0.000) 

-0.0088223 

(0.000) 

-0.0111427 

(0.000) 

Note: The table reports the time-series coefficients (risk premiums) in all markets and up and down markets, the 

t-statistics is shown in parentheses. 

 

Table 3 reports the results from testing the beta-return relationship conditional on the sign of the excess 

market return (Eq. (15)), reporting the average risk premium in both up and down markets. The results from 

the cross-sectional regression show a significant positive relationship between beta and returns during up 

markets, and a significant negative relationship between beta and returns. The null hypothesis of no beta-return 

relationship is rejected. The mean value of the regression coefficient γ+ for the Russell 1000 index is 

0.0082767, and the mean value of the regression coefficient γ+ for the Russell 2000 is 0.0100167. Such finding 

implies that during up markets high beta portfolios exhibit higher returns than low beta portfolios. 

The mean value of the regression coefficient γ- for the Russell 1000 index is -0.0085587, and the mean 

value of the regression coefficient γ- for the Russell 2000 is -0.010144. Such findings imply that during down 

markets high beta portfolios earn lower returns than low beta portfolios. This results conform to the findings 

of Morelli (2011), which suggest that beta risk is rewarded in up markets for losses incurred in down markets. 

This significant beta-return relationship holds across the total time period and also across both subperiods.  

 

5. Conclusion 

 

This paper contributes to the existing literature regarding the role of beta in explaining security returns 

by incorporating ARCH models to estimate time varying betas. The empirical result show that when the sign 

of the excess market return is ignored beta is found to be an insignificant risk factor. During periods when the 

excess market return is positive, a significant positive relationship is found between beta and returns. And 

during periods when the excess market return is negative, a significant negative relationship is found between 

beta and returns. This finding confirms the hypothesis of Pettengill et al. (1995) and Morelli (2011). However, 

the beta is found to be an insignificant risk measurement in the absence of recognition of the sign of the excess 

market return. This being said, in spite of the lack of empirical support, the CAPM is still the preferred model 

for managerial finance courses, because the empirical support for other asset-pricing models is no better. It is 

important to investigate the relationship between conditional beta and the security returns in the equity markets 

of other countries. 
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Appendixes: 
Appendix 1: Tables 

 

Table A1. Summary statistics for Russell 1000 and 2000 Index 

 Obs Mean Std. Dev. Skewness Kurtosis 

Russell 1000 3582 1303.89 4.44 0.609 0.406 

Russell 2000 3582 1326.12 4.63 0.628 0.087 

Russell 3000 3582 1326.11 4.63 0.628 0.409 

 

Table A2. Dickey-Fuller test for Russell 3000 index 

Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

-0.473 -3.430 -2.860 -2.570 0.8972 

 

Table A3. Phillips-Perron test for Russell 3000 index 

 Test statistic 1% critical value 5% critical value 10% critical value 

Z(rho) -0.449 -20.700 -14.100 -11.300 

Z(t) -0.190 -3.430 -2.860 -2.570 

Note: MacKinnon approximate p-value for Z(t) = 0.9397 

 

Table A4. Dickey-Fuller test for returns 

 Test statistic 1% critical value 5% critical value 10% critical value p-value for Z(t) 

Russell1000 -64.963 -3.430 -2.860 -2.570 0.0000 

Russell2000 -64.891 -3.430 -2.860 -2.570 0.0000 

Russell3000 -64.955 -3.430 -2.860 -2.570 0.0000 

 

Table A5. Phillips-Perron test for returns 

 Russell 1000 Russell 2000 Russell 3000 1% critical value 

Z(rho) -3626.566 -3661.561 -3631.269 -20.700 

Z(t) -65.548 -65.347 -65.522 -3.430 

Note: MacKinnon approximate p-value for Z(t) = 0.0000 

 

Appendix 2: Figures 

 

 

 

 

        

 

 

 

 

 

 

 
Figure A1. AC of Russell 3000 index     Figure A2. PAC of Russell 3000 index 

 

  

 

 

 

 

 

 

 

 

 

 
Figure A3. AC of squared returns            Figure A4. PAC of squared returns  
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Figure A5. AC of res. Russell 1000     Figure A6. PAC of res. Russell 1000 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A7. AC of res. Russell 2000     Figure A8. PAC of res. Russell 1000 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A9. AC of res. Russell 3000     Figure A10. PAC of res. Russell 3000 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure A11. AC of res. mean eq. Russell 1000          Figure A12. PAC of res. mean eq.  
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Figure A13. AC of res². mean eq. Russell 1000        Figure A14. PAC of res². mean eq. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A15. AC of res. mean eq. Russell 2000           Figure A16. PAC of res. mean eq. 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure A17. AC of res². mean eq. Russell 2000           Figure A18. PAC of res². mean eq. 
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